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ABSTRACT

We present improved estimates of several global properties of the Milky Way, including its current star formation
rate (SFR), the stellar mass contained in its disk and bulge+bar components, as well as its total stellar mass. We do
so by combining previous measurements from the literature using a hierarchical Bayesian (HB) statistical method
that allows us to account for the possibility that any value may be incorrect or have underestimated errors. We
show that this method is robust to a wide variety of assumptions about the nature of problems in individual
measurements or error estimates. Ultimately, our analysis yields an SFR for the Galaxy of
M, = 1.65 + 0.19 Mg yr~!, assuming a Kroupa initial mass function (IMF). By combining HB methods with
Monte Carlo simulations that incorporate the latest estimates of the Galactocentric radius of the Sun, R, the
exponential scale length of the disk, L, and the local surface density of stellar mass, Z4(Ry), we show that the
mass of the Galactic bulge+bar is M2 = 0.91 + 0.07 x 10'° My, the disk mass is MY = 5.17 + 1.11 x 10'" My,

and their combination yields a total stellar mass of M, = 6.08 + 1.14 x 10'° M, (assuming a Kroupa IMF and an
exponential disk profile). This analysis is based upon a new compilation of literature bulge mass estimates,
normalized to common assumptions about the stellar IMF and Galactic disk properties, presented herein. We

additionally find a bulge-to-total mass ratio for the Milky Way of B/ T = 0.150%)0:5 and a specific SFR of

M, /M, =271 + 0.59 x 10" yr™".

Key words: Galaxy: bulge — Galaxy: disk — Galaxy: fundamental parameters — Galaxy: stellar content — methods:

statistical — stars: formation

1. INTRODUCTION

Determining the global properties of the Milky Way
inherently poses unique challenges. Unlike any other galaxy
in the universe, we lack the ability to study the Milky Way
from an outside perspective. This disadvantage is greatly
amplified by our location within the disk, forcing us to peer
through the dusty interstellar medium (ISM) when looking
toward other stars. The Galactic ISM inhibits our view of more
distant regions of the disk, particularly in the optical and near-
UV wavelengths (cf. Herschel 1785; Schlegel et al. 1998). For
these reasons, there are a limited number of studies in the
literature that aim to produce a global picture of our Galaxy.

Here, we aim to improve our understanding both of the total
star formation rate (SFR) and the total stellar mass of the Milky
Way. We do this, not by analyzing any new observational data,
but by statistically combining the prior measurements of these
properties in the literature using the power of a hierarchical
Bayesian (HB) method (Press 1997, pp. 49-60). Such methods
are not new to astronomy, though still rare in the literature; they
can be a robust and versatile tool for both data and model
analysis, and subsequently their prevalence in the literature has
grown greatly in the past few decades (Loredo 2012). For
instance, Newman et al. (1999) applied this technique (in a
maximum likelihood framework) to combine the observed
properties of 43 +7 real and similar number of imposter
Cepheid variables found in the Centaurus cluster, handling the
possibility of false positive detections, in order to determine a
period—luminosity-relation-based distance modulus to NGC
4603. Lang & Hogg (2012) were able to produce tight
constraints on the orbit of Comet 17 P/Holmes by applying this
method to the diverse set of image query results for “Comet
Holmes” obtained from the Yahoo! internet search engine.

March et al. (2014) present an HB model to improve
constraints on cosmological parameters by combining informa-
tion from supernovae Ia lightcurves. Shetty et al. (2013, 2014)
use the HB method to reveal the Kennicutt—Schmidt relation,
i.e., the relationship between SFR, M,, and molecular gas
surface density, X0, to be non-universal and in many cases
sub-linear, indicating that X, alone is insufficient to predict a
galaxy’s SFR. Most recently, Mandel et al. (2014) applied this
method in order to disentangle the effect of systematic
reddening due to host galaxy dust from the expansion-
velocity-dependent variation in intrinsic SN Ia colors.

Adopting a Bayesian perspective, our major goal in this
paper is to answer the question: Given the previous measure-
ments of a given parameter of the Milky Way, what
conclusions can we draw about its true value? We first apply
this analysis method to estimate the Milky Way’s SFR. We
next consider the bulge and overall mass of the Milky Way.
This introduces additional complications due to variations in
the Galactocentric radius of the Sun, R,, assumed in different
measurements. To deal with this, we combine our HB analysis
with Monte Carlo (MC) simulations which incorporate the
current uncertainties in Ry. The MC method allows us to
simultaneously produce new estimates for the stellar mass
contained in the bulge+bar, Mf, the stellar disk mass, Mf , and
the total stellar mass, M, of the Milky Way, assuming the
single-exponential disk model from Bovy & Rix (2013), and
incorporating uncertainties in R, the exponential scale length
of the disk, L,, and the local surface density of stellar material,
Z*(RO)-

We structure this paper as follows. In Section 2 we describe
the HB formalism we use in order to construct aggregate results
incorporating the information from a variety of independent
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measurements. In Section 3 we apply this technique to the prior
estimates of the Milky Way’s SFR. The results of the SFR
analysis are discussed in Section 3.3. Next, we take on a more
complex example, ultimately constraining the total stellar mass
in the Milky Way. Section 4.1 details the stellar disk model we
assume for this study. In Section 4.2, we explain how we use
MC simulations to produce a new estimate of the disk mass, to
supplement the HB analysis used to determine the bulge+bar
mass, and we combine these two results to yield the total stellar
mass in the Galaxy. The results for these three measurements
are discussed in Section 4.5. We summarize and discuss the
main results of this study in Section 5. Lastly, in the Appendix
we explore how plausible it is that Galactic disk deviates from a
pure exponential profile, and investigate how this would affect
our results.

2. HIERARCHICAL BAYESIAN ANALYSIS

In this section, we describe the analysis methods we use to
combine a set of measurements for some observable (e.g., My

or M2), along with their attendant uncertainties, into one
aggregate result using a HB formalism. Ultimately, this process
provides a new probability distribution function (PDF),
referred to in Bayesian terms as the posterior, for the
observable of interest by combining the PDFs yielded from
multiple individual estimates, enabling us to incorporate the
information gained from a variety of independent observations
and analyses. This method allows us to account for the
possibility that any of the measurements may be incorrect or
affected by systematic errors that have been overlooked. This is
a key advantage over calculating simpler statistics, such as the
standard inverse-variance weighted mean, which are more
easily skewed by outliers and are also contingent on the
assumptions that the individual PDFs are Gaussian in form and
statistically compatible.

2.1. Defining the Problem

We begin by collecting a set of N independent measurements
of observable @ from the literature, and denote this data set as D.
In a Bayesian framework, each study can be considered to
provide a PDF for the true value of O, u,, given the data
obtained; if the probability distribution is Gaussian in form, it can
be described by its mean value u; and standard deviation o;.
Under the assumption of normality, we know there should be a
~68% chance of y, being in the range u; + o; and ~95% chance
of it being within u; + 20;, assuming all errors (statistical and
systematic) are accounted for in o;. Of course, this is not always
a safe assumption; often we may find that two separate
measurements of (9 are in tension with each other, producing
results with 1o or even 20 confidence regions that do not
overlap. If this tension is sufficiently great, we can conclude that
at least one of the estimates of x, must be affected by a bias or
systematic error that has not been incorporated in o;; this is not
sufficient to determine which of the two estimates is problematic.

2.2. Relieving the Tension

Practically speaking, the measurements included in our data
set, given their nominal errors, must always be in tension with
each other at some level of significance. In order to resolve this
tension we can hypothesize that some of these studies have
overestimated their ability to measure . Suppose that fyoeq
denotes the fraction of “good” measurements; i.e., the probability
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that any single measurement within D is accurately described by
u; and ¢;. Thus, 1 — ﬁgood is the global fraction of measurements
that are “bad”—i.e., inaccurate—generally due to underestimated
error bars (e.g., ones that omit the possibility of significant
systematic errors). With no a priori knowledge of which
estimates are not “good,” we must find a way to remedy their
effect when obtaining combined constraints on . In this study
we explore a number of ways to do this. For instance, perhaps the
“bad” estimates simply require their error bars to be scaled by a
constant factor; we will denote the resulting degraded uncertainty
estimate by o, ; = no;. We refer to this as the “free-n” model
below.

More likely, problematic measurements may have overlooked
systematic uncertainties in their methods which should be added
in quadrature to the nominal error estimates. Let MI.MED denote

the median of all the y; values. We investigate what happens

when adding a fractional amount Q of /,{iMED in quadrature to the

nominal error bars, such that the error for a “bad” estimate is
given by oé‘l- =0’ + (Qu iMED )>. We use QﬂiMED here, instead
of Qu;, to avoid a slight bias toward assigning lower errors to
lower valued estimates of u,. We refer to this as the “free-Q”
model below. Instead, we could consider a case where there is a
floor value of fractional error which the the nominal error bars
should not dip below. In such a case we would use
OF; = FﬂiMED if 6; < FﬂiMED, or otherwise o ; = 0;. We refer
to this as the “free-F”’” model below.

Furthermore, it is possible that some of the included
estimates are entirely wrong, and thus should effectively be
excluded from D. In this scenario we would handle this by
replacing the nominal Gaussian PDF with x; and o; by a
uniform probability distribution over the full potential
parameter range. We label this as the “R,,q-flat” model below.
We also examine the results of assuming we have included no

“bad” measurements in our analysis by forcing f,

instead of allowing it as a free parameter (i.e., to assume that all
of the y; and o; are correct). All of these ways of dealing with
the inclusion of “bad” measurements in our data set have
different advantages and address the problem from a slightly
different approach. A hierarchical model allows us to quantify
the affect of the “bad” measurements on the combined results
by simultaneously fitting parameters that describe the data
(e.8., faooas 1, Q, F), while also fitting for those that describe
the physical model (e.g., ). It is important to note that, in all
cases, the constraints on the physical parameter of interest
yielded by this technique will only be improved if the
systematics affecting the individual measurements are different,
as systematic errors that are common across a set of
measurements do not improve by adding more data. In the
following section, we describe the HB formalism we use to
analyze each scenario and the criteria we use to distinguish
which of these models best fits the data.

q =1

2.3. The Formalism

We closely follow the prescription laid forth by Press (1997,
pp- 49-60) and refer the reader to this work for a more in-depth
derivation. Bayes’ theorem provides the framework in which
we can calculate the probability of a particular model given
data D:

P(op) = EBEE), (M
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where © is a vector containing the free parameters of the
model. Here, the posterior probability P(®|D) is equal to the
product of the likelihood P (D|®) and the prior P (®), divided
by the evidence P (D). The likelihood is the probability of
obtaining the actual measurements D, given that the parameters
© specify the correct model of the data. The prior reflects our
previous knowledge of what the parameters of the true model
are, before the data D are considered. In general, this must be
subjectively chosen. The evidence represents the overall
probability of finding the data in hand, and when considered
on its own it provides a useful means of comparing different
models, as we will discuss in Section 2.3.4. This is obtained by
integrating the likelihood weighted by the prior (i.e., the
numerator of Equation (1)) over all possible values of ©; hence
it is also sometimes called the marginal likelihood. As written
here, the posterior yields a properly normalized PDF
representing the degree of belief of the model parameters ©
being in a given range.

2.3.1. The Likelihood

We begin with the assumption that all measurements may be
represented by the combination of two probability distribu-
tions, representing the possibility that it is “good” or “bad.”
The PDF for u, given a measurement will be P(uy) =
P (uyl“good”) P(*“good”) + P (uy|“bad”)(1 — P(“good™)); the
probability that a given measurement is “good” is simply fyo0d-
We assume that each measurement in D is statistically
independent from all the others; in that case we may write
the overall likelihood for D as the product of the likelihoods for
each measurement we include. For each of the scenarios
described above in Section 2.2, the appropriate likelihood is
given by:

For the free-n model (i.e., where “bad” measurements are
assumed to be underestimating errors by a constant factor), the
likelihood is

N
P(Dltgs fyonas n) =1

i=1 27'[(7,-2

fgood exp _(/"i_ﬂo)z
26i2

1 _fgood _(,ui - /"0)2
+ —2 exp W .
4/ 2 (}’IG,) no; (2)
For the free-Q model (i.e., where “bad”-measurement errors

are assumed to require extra uncertainty added in quadrature),
the likelihood is

N 2
D good _(/45 - /4()) ]
( 140> faooa » Q) 111 ,—2710 [ 267

1 _-]fgood
+
o)
—(u; = ﬂo)z
X exp

2@+ (2™ || @)
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For the free-F model (i.e., where “bad” measurements are
assumed to be underestimating errors only if they are below a
minimum threshold), the likelihood is

P(D|M0 good * F) l_N[

i=

Jeo0d —(u; = uy)? 1 = fyo0d —(u; = o)

200 a exp Hi ;0 + 3 exp Hi — Ho =1 if o; < Fy[MED
[ : 2

2no; 20; 20 (F,uiMED) 2 (F#iMED)

1 —(u; — Mu)z R (4)
= exp , otherwise.

2
270 20;

In this model, fyooq is the fraction of “good” measurements
assuming the given value of F; i.e., it is the fraction of accurate
measurements among those with o; < FyiMED. This is subtly
different from the former two models, where f,,04 Characterizes
the entire data set at any given value of n or Q.

For each of the above three models, we also explore the
results of assuming that all measurements included in D have
misestimated errors to some extent by not treating fyo0q as a free
parameter, but rather setting it to zero.

For the R,,4-flat model (i.e., where “bad” measurements are
assumed to be entirely wrong and discardable, and so we
replace their PDFs with a flat distribution), the likelihood is

N _( P = )2
(Dl,uo’ good) H g:: [ quazluo ]

i=1 i

+ (1 —fgood) X const.). (5)

The constant here is chosen such that the integral of P (x|

“bad”) is equal to 1.

Lastly, there is the possibility that all of the measurements
included in our analysis are “good” and have accounted for all
uncertainties in their analyses. We can determine u, for this
scenario by setting fyooq t0 Unity; in this case, the results of the
HB analysis method become equivalent to the inverse-variance
weighted mean of the individual measurements. Effectively,
this model serves as the null hypothesis of our study, and we
denote this as the all-“good” model when comparing our
results.

In total, this yields eight different ways of modeling “bad”
measurements that could influence our aggregate estimate of
Uo- In Section 2.3.4 we will describe which of these options is
best to follow.

2.3.2. The Prior

If we assume that our prior knowledge of the parameters of
our model are unrelated to each other, the overall prior for © is
separable into the product of the priors for each parameter. For
example, in the context of this paper, we would not expect that
the probability of an astronomer quoting accurate error bars on
his/her result should be different if the Milky Way is truly
producing three solar masses worth of new stars each year as
opposed to two. This means we can write the joint prior
P(Ugs faooa) 3 P o) P (fypoa lttg) = P (o) P (fyooq )- Likewise,
in the absence of data, we would not expect a parameter that
describes how inaccurate a study’s error bars are to be
dependent on the probability of any one measurement being
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“bad” or the mass of new stars being formed in the Galaxy
per year.

For all four free parameters we use to characterize “good”
and “bad” estimates we choose flat priors, meaning that we
believe there is a 100% chance of the true value being within a
given range, and any single value within that range has equal
probability to any other. We note that these assumptions are
somewhat arbitrary; for instance, a flat prior in a given quantity
corresponds to a non-flat prior for the log of that quantity. Flat
priors in log space are generally preferred for quantities with no
relevant scales/order of magnitude; however, that does not
apply here. Effectively, our choice causes all posterior
distributions we calculate to be determined only by the
likelihood of the observed data. For the free-n model we
assume 100% probability that n is in the range [1, 4]; i.e., that
the errors for “bad” measurements will be underestimated by a
factor no less than 1 and no greater than 4. In turn, for the free-
0O model we assume 100% probability that Q is in the range [0,
1]; i.e., the extra error needed to be added in quadrature to
correct the nominal error bars of a “bad” measurement is no
less than 0 and no more than 100% of yiMED. Lastly, for the
free-F model we assume 100% probability that F is in the range
[oMN / uMEP, 1], where 6™ is the minimum error estimate of
all measurements included in D; i.e., the minimum error
estimate for any “bad” measurement should be no less than
oMN and no larger than /,tiMED. The priors can then be

1
expressed as piece-wise functions,

0, otherwise;

1
—,if1<n<g4
P(n) =43 = (7

0, otherwise;

I, if 0<Q0xK1
P = 8
©) {0, otherwise; ®
1
— ifeMN/UMED <P
P(F) = 1_6iMIN/MiMED / i I s )
0, otherwise.

2.3.3. The Marginalized Posterior

In this subsection, we detail how the posterior PDF for a
single parameter of our model is produced from the joint
posterior from the HB analysis, using the free-n model as an
example. Returning to Equation (1), the posterior PDF for the
parameters of our model will be

P(/‘O’fgood’ I’llD) &

s [ == o7
267

l

P ()P (fugoa )P () il
i=1

27'[61'

Lo p[_(ﬂi_ﬂo)Z].

———¢eX
1/271(}10,-)2 2(no;)?

It is often more informative to consider the posterior for an
individual parameter; we can simply obtain this by

(10)
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marginalizing: i.e., integrating the PDF over all other
parameters of the model. For instance, in our example, if we
are interested in the marginalized posterior for u,, then we
calculate

P(uolD) = [ [P(tt0: fooas n1D) g dn. (1)

Note that this result averages over all possible values of fyo0q
and n. Lastly, we normalize the posterior to be a true PDF by
dividing by the evidence, which is obtained by integrating
Equation (11) over all u,,.

2.3.4. Choosing Among Models

In this study, we consider a variety of ways to model the
inclusion of “bad” measurements in our data set. Generally
speaking, a model with more free parameters will be able to
produce a better fit to the data; however, the constraints on the
model will be weaker, as there are more degeneracies
introduced between parameters. In order to compare the utility
of the models to each other, we calculate the evidence for each
model. If M; labels a particular model which is specified by
parameters O, then the evidence for model M; is

P(DM) = [P(D, 0M))d0 = [P(DIO)P(OM;)d0;

12)

this is simply the likelihood integrated over all possible
parameter values of the model, weighted by their priors. This
provides a natural, Bayesian method of incorporating the
principle of Ockham’s razor into our model comparison.
Essentially, the evidence will be maximized by a model’s
ability to better fit the data; however, this will be compromised
if excessive parameter space is required to achieve such a fit.
As the all-“good” model represents the null hypothesis for our
HB analysis, for each model we report the Bayes Factor defined
as

P(D|M;)

= 13
P (D |Mall—“good”) ( )

Effectively, K represents the ratio of the posterior odds to the
prior odds of M; the being the correct model over Mgji-«go0a”
(Kass & Raftery 1995, and references therein). As defined this
way, we choose the best model of the data to be the one with
largest K. In our tables we list for each model the difference in
log,, K compared to our fiducial model; a difference of 2 is
commonly used to indicate statistically significant differences
in model utility.

As alternatives to the Bayes Factor, we also report the
Akaike information criterion (Akaike 1974, hereafter AIC),
defined as

AIC=-2In% + 2k, (14)

and the Bayesian information criterion (Schwarz 1978, here-
after BIC), defined as

BIC=-2InZ+kInN, (15)

where N is the number independent measurements included in
our analysis, k is the number of free parameters of the model,
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and % is the maximum likelihood value. These provide a
secondary and less sophisticated way of weighing the goodness
of fit against the number of free parameters included in each
model, and whose comparison can serve as a rough (and less
computationally intensive) approximation to comparing
log,, K values. However, in contrast to the K values, the best
model of the data would be the one that minimizes the
information criteria. Thus, for each model we report AAIC (or
ABIC) measured from the lowest AIC (or BIC) value among
all models; similar to the A log;, K values, a change of ~2 is
indicative of statistically significant differences in model utility
(Burnham & Anderson 2002). Note that, as AIC and BIC
values are calculated on a natural logarithm scale, this
constraint is a bit less conservative than the one used for
A log,, K values (i.e., bigger differences in A In K are required
to indicate a significant difference).

The remainder of this paper focuses on two application of
the HB method. First, we use this technique to constrain the
SFR of the Milky Way. In our second and more complex
example, we produce an hierarchical estimate of the stellar
mass contained in the combined bulge & bar components of the
Milky Way, where we must incorporate MC simulations into
our technique to reflect uncertainties in the Sun’s Galacto-
centric radius. Simultaneously, we produce PDFs for the stellar
mass of the disk component of the Galaxy, as well as its
total stellar mass. As mentioned earlier, we are effectively
assuming that if there are systematic errors in measurements of
the Milky Way properties, they will generally not be in
common among all the techniques, but rather, given the
multitude of methods applied, many methods should have
different systematics (of differing signs). If that is not the case,
errors will not be reduced when combining information from
multiple results.

3. THE MILKY WAY’S STAR FORMATION RATE
3.1. The SFR Data

Recent work by Chomiuk & Povich (2011) provides a
thorough review and renormalization of Galactic SFR, My,
estimates made in the last three decades. Examining these
original works reveals a discouraging scatter in the derived
results, spanning the range of 1 to 10 Mg yr~!. This proves to
be predominantly due to a heterogeneous mixture of initial
mass functions (IMFs) and stellar population synthesis (SPS)
models used. The authors translate these results all to a
uniform choice of the Kroupa broken-power-law IMF (Kroupa
& Weidner 2003) as well as the Starburst99 v5.1 SPS model
(Védzquez & Leitherer 2005). As a result, these studies, which
encompass many different methods and observational surveys,
all collectively are in general agreement with each other after
being placed on an equal footing, converging to an SFR of
M, = 1.9 + 0.4 Mg yr~!. We refer the reader to Table 1 of
Chomiuk & Povich (2011) for the data we use to estimate the
Milky Way SFR, as well as to their Section 3 for a detailed
discussion of the measurements. We do not utilize the first two
entries in that table, the measurements from Smith et al.
(1978) and Giisten & Mezger (1982), as these were both
updated by the Mezger (1987) radio free—free result.
Additionally, the error estimate on the Misiriotis et al.
(2006) dust-heating measurement has been increased to 0.95
Mg; i.e., due to the lack of error estimates we assign 50%
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Table 1
Combined SFR Results For Various Model Assumptions
Combined
Optimal M, + lo
Model Value®  Mpyr™) & AAIC ABIC AlogK

feooa Free—Some of the measurements have inaccurate error bars.

Free-n 1.00 1.65+£020 3 40 4.4 -0.73
Free-Q 0.00 1.66£021 3 40 44 -0.31
Free-F 0.26 1.67+£022 3 40 44 -0.25
Roa-flat N/A 1.65+£020 2 20 22 -0.73

feooa = 0 —All of the measurements have inaccurate error bars.

Free-n 1.00 1.65 £0.22 2 2.0 22 -1.59
Free-Q 0.00 1.67 £0.23 2 2.0 2.2 -0.58
Free-F 0.16° 1.69 £0.26 2 2.0 22 -0.49

feooa = 1 —None of the measurements have inaccurate error bars.

All-“good™ N/A 1.65 £0.19 1

Notes.
4 The value of n, Q, or F marking the peak of marginalize posterior PDF for
these quantities in each model.

The number of free parameters in the model. See Section 2.3.4.
¢ This corresponds to the lowest allowed value of F in the model, FMIN, where
the smallest allowed error on any estimate in Dgpg is just the minimum error
estimate; that is, o ; = FMIN y,.MED = M, Since FMIN affects no estimates in
Dser, this is equivalent to setting fyooq to unity (see Equation (4)). In fact, the
HB analysis most strongly supports making no adjustment to the nominal error
bars (i.e., the all-“good” model where we always set f,,q = 1).
9 Since we use flat priors that are much broader the the likelihood PDF, this is
equivalent to the inverse-variance weighted mean.

uncertainty to it. This particular data set is denoted Dspr
hereafter.

3.2. Setting a Prior on My

To place a prior on its SFR, we utilize the fact that the Milky
Way is confidently known to be a spiral galaxy. In addition, it
appears that the Galaxy has experienced a relatively quiet
merger history, undergoing predominantly secular evolution
with no significant interactions to spark a large burst of new
stars (e.g., Unavane et al. 1996; Mutch et al. 2011). Therefore,
we agnostically assume that the Galactic SFR could be
anywhere from 0 to 6 solar masses per year (before considering
the data in Section 3.1). This is represented using a uniform
probability distribution such that

if 0 < My < 6Mg yr™!

1
P(M*) = g’ (16)

otherwise.

3.3. SFR Results

Table 1 shows the HB constraints on M, from each model
that we consider. The overwhelming similarity between the
posterior results from these different models to a simple
weighted average (corresponding to the last line in the table)
suggests that nominal errors on each measurement in the SFR
data set are likely very accurate, if not overestimated. In
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P(fgoodyn | DSFR)
0 01 02 03 04 05 06 07 08 09 1.0

00 02 04 06 08 1.0

f good
Figure 1. The joint posterior probability distribution function (PDF),
P (fyooa > 11| Dsrr)s describing the probability of each possible value of the

fraction of “‘good” estimates, fyoods (i.e., ones with accurate error bars) included
in our Milky Way star formation rate (SFR) data set, Dsgg, and the scale factor
n needed to expand the error bars for any measurement treated as not “good.”
This two-dimensional probability distribution is produced from a hierarchical
Bayesian (HB) analysis, where we have marginalized over all possible true
values for the Milky Way’s SFR. For ease of reading, we have normalized the
peak value to 1. This plot clearly shows how strongly the HB analysis favors a
model with minimally adjusted error bars on the individual estimates included
in our analysis: the probability given the observed data set is maximized if
either n is ~1, and/or fy0q is ~1.

Figure 1, we show the joint posterior PDF for fyo0q and n
(normalized to a peak value of 1); the posterior obtained by
marginalizing over M, is maximized where feood and n each
approach unity. Figure 2 shows the marginalized posterior
probability for fy,04 for each model which allows it to be a free
parameter. It is clear from the plot that modifying the error bars
of “bad” measurements in any way yields little preference for a
particular value of fyo04, Whereas throwing out “bad” estimates
favors values near one. This occurs because for values of n near
1 (or Q or F near 0), fyo0q has very little effect, so a broad range
Of foo0a Values yield similar results.

Similar analyses to that in Figure 1 for each of the models of
“bad” measurements yield the same overall message: the
measurements are sufficiently consistent with each other that
little, if any, adjustment of the nominal errors is demanded. In
fact, we find that for any model for how to remedy “bad”
estimates within the HB formalism, the data always drives
toward a point in k-dimensional parameter space with few
points treated as discrepant; i.e., fy,,q ~ 1, and M, ~ 1.66

Mg yr~!; or, alternatively, Jaooa < 1butn=1lorQorF =0,

which has equivalent effect. The best model of the data (i.e.,
the one with largest Bayes Factor, K) turns out to be where we
set foooa = 1 uniformly treating every estimate as “good” and
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P(fso0d | DsFr)

fgood

Figure 2. The posterior PDF, P(fgmd|D5FR), for the fraction of “good”

estimates (i.e., ones with accurate error bars), fyooa, included in our Milky Way
star formation rate (SFR) data set, Dspr, for each model of “bad”
measurements we consider. Each curve is produced from a hierarchical
Bayesian analysis, where we have marginalized over all other free parameters
in the model. Each corresponds to a different model of how to remedy the
inclusion of “bad” measurements included in Dsgr: the solid red curve
corresponds to a case where we must multiply the error bars for “bad”
measurements by a free parameter n; the dashed blue curve is produced by
adding a fractional amount (given by the free parameter Q) of the median value
of all estimates included in Dgpr in quadrature to their nominal error bars; the
green dash-dotted curve results from imposing a floor on “bad” measurements’
nominal error bars equal to a fraction amount (given by the free parameter F)
of the median estimated SFR; and the purple triple-dot-dashed curve
corresponds to a case where we model “bad” measurements as entirely wrong,
and replace them with uniform probability distributions over the entire
parameter space. We see that all models peak at f,,q = 1, indicating that there

is minimal tension between the measurements included in Dgpg. Smaller values
of fgo0a Can be consistent with the data for most models, but only if Q or F'is ~0
or n ~ 1, corresponding to no difference between “good” and ‘“bad”
measurements.

hence requiring the fewest free parameters in the fit (only M,
itself). This yields an aggregate SFR for the Milky Way
of M, = 1.65 + 0.19 Mg yr!, which we choose as our
fiducial result. For comparison, we overlay the individual
measurements in the SFR data set on our fiducial hierarchical
result in Figure 3. We note that, as we are using flat priors, this
scenario gives the same result as the inverse-variance weighted
mean (IVWM). The finding that the data are sufficiently
compatible that a simple model is sufficient matches well with
what we would conclude using the chi-squared statistic to
judge goodness of fit. Specifically, the IVWM for our sample
of SFR measurements yields > = 3.83, and we would expect
a 95% chance of this statistic falling in the range [2.18, 17.53].

Chomiuk & Povich present arguments suggesting that the
Robitaille & Whitney (2010) measurement may more accu-
rately be treated as a lower limit rather than a best-fit value for
the SFR. Given that uncertainty, we investigate the effect of
doubling the nominal errors in that measurement within our
calculation. Making this change yields a <1¢ shift in the mean
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25— T

P(M, | Dgrr)

Milky Way’s SFR (Mg, yr—1)

Figure 3. The posterior PDF, P(M,|Dsrgr), for the Milky Way’s star
formation rate (SFR) is shown as a solid black line. This result is produced
from the hierarchical Bayesian (HB) analysis where we assume all
measurements have accurately estimated error bars; since we have assume
flat priors over the entire parameter space, this is equivalent to the inverse-
variance weighted mean. This model is the simplest one that provides a good fit
to the data, and hence is favored by both the Bayesian evidence and
information criteria. For comparison, we overlay the individual estimates from
our SFR data set as dashed/dotted colored lines. We see that our methods yield
a more tightly constrained estimate of the SFR of the Milky Way, while also
being consistent with each individual estimate incorporated into the combined
result.

of the posterior distribution. With this deweighting, the
inclusion or exclusion of this measurement has little impact
on our results (changing the consensus Milky Way SFR by no
more than 0.17 Mg yr~!). A second concern arises from that
fact that Equations (2)—(5) are contingent on the individual
measurements being independent of one another. We note that,
even though Bennett et al. (1994) and McKee & Williams
(1997) utilize the same COBE data, the errors in their SFR
estimates appear to be dominated by the differences between
the assumptions made by the authors, and so we expect that we
can treat them as independent measurements. We show how
our aggregate SFR estimate varies under these different
treatments of the Robitaille & Whitney (2010) measurement,
as well as when excluding the Bennett et al. (1994)
measurement, in Table 2.

If all of the SFR estimates employed suffer from a common
systematic error, this would not be reflected in the HB result.
For instance, if the Kroupa IMF is unlike the actual IMF in the
Milky Way, our SFR estimates could all be systematically off
from the true value in a similar way. However, this error would
cancel out when the Galaxy is compared to extragalactic
objects, for which SFRs and stellar masses are generally
calculated assuming Kroupa-like IMFs. Similarly, Chomiuk &
Povich have recalibrated each of the Milky Way M, estimates

to the Kennicutt (1998) assumption that an SFR of 1 Mg yr~!
produces a Lyman continuum photon rate of 9.26 x 10°?
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Table 2
Combined SFR Results For Various Data Assumptions
Combined
M* + lo
Model Treatment of Data (Mg yr™h
all-“good”  Including RW10* with nominal errors 1.65 £ 0.19
(Fiducial)
all-“good”  Including RW10 with errors doubled 1.77 £ 0.21
all-“good”  Excluding RW10 from the calculation 1.82 +£0.21
all-“good”  Excluding B94® from the calculation 1.63 £0.19
Notes.

? Robitaille & Whitney (2010).
® Bennett et al. (1994).

photon s™" for a Salpeter IMF (this relationship is then reduced
by a factor of 1.44 to convert it to the Kroupa IMF). If this
assumption is in error, then all the SFRs in our data set would
be affected. However, once more, extragalactic SFRs would be
off by the same factor, so that this systematic will drop out
when comparing the Milky Way to other galaxies.

Apart from the IMF and the Lyman continuum rate to SFR
relationship, common-mode systematics among all the SFR
measurements appear to be unlikely. This is due to both the
diversity of techniques used to estimate the Galactic SFR and
the wide range of assumptions made by the different studies
that utilize the same basic techniques. However, one might still
worry that there are common underlying assumptions that may
systematically offset SFR results from one method in
comparison to all the others. For instance, two of the nine
studies we use estimate the Galactic SFR by modeling the
population of young stellar objects (YSOs) found from infrared
(IR) surveys of the Galaxy. While these studies employ
entirely different IR data, they are both contingent on
assumptions about the properties of YSOs, which do not affect
the other measurements, and in turn can systematically shift
these results in unison with respect to the measurements
utilizing different methods. Our HB analysis assumes that the
errors from each study are random compared to each other and
hence does not address this type of common-mode effect
(much as the IVWM would not).

To test whether method-to-method variations are significant,
we have performed bootstrap resampling of the SFR data by
randomly drawing only one measurement out of those utilizing
each measurement technique (e.g., all those based on the
measured ionization rate or YSO counts). Hence, each
resampled data set comprises four SFR estimates, each
obtained from a unique measurement method, which we then
use to calculate the HB posterior using the all-“good” model
(allowing no extra compensation for systematic errors). We
repeat this process 1000 times, each time measuring the mean
from the posterior distribution. We then do a similar analysis,
but where we instead draw four measurements at random from
the entire data set each time. We find the standard deviation of
the mean to be 0.22 if we use four measurements from different
methods and 0.25 if we select four measurements completely at
random. This indicates that inter-method variations are
negligible compared to intra-method random variations—if
anything, SFR measurements from different methods are more
similar to each other than those which utilize the same
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technique. We therefore can safely conclude that common-
mode systematics do not have a large impact.

4. THE MASS OF THE MILKY WAY’S
STELLAR COMPONENTS

In this section we describe the methods we use to produce
improved estimates of the total stellar mass, My, in the Milky
Way and its components. To do so, we first make independent
estimates of the stellar mass contained in the disk and bulge
+bar components, MY and M2 respectively. For M2, we
assume the single-exponential model of the Galactic disk from
Bovy & Rix (2013), and use MC simulations to incorporate
updated estimates of the Sun’s Galactocentric radius, Ry. We
constrain M2 using our HB formalism, similar to the analysis
done in Section 3 for M, but now using the MC simulations to
propagate uncertainties in the value of R into the bulge mass
posterior. Lastly, we combine self-consistent realizations of M2
and M2 to yield a probability distribution describing the total
stellar mass.

4.1. The Stellar Disk Model

To model the structure of the Milky Way, we assume the
stellar material of the disk is distributed in a single-exponential
surface density profile. Integrating this profile over all radii
yields the total stellar mass,

M2 = 275, (Ro)L} exp(Ro/La), )

where X, (Ry) is the surface density of stellar mass in the local
neighborhood and L, is the exponential scale length of the disk.
Specifically, we constrain these parameters to be consistent
with the measurements made by Bovy & Rix (2013, see
Appendix; for a discussion of alternative disk models).

Using SDSS/SEGUE spectroscopic measurements, these
authors have segregated a uniform sample of ~16,000 G-type
dwarf stars into 43 mono-abundance populations (MAPs)
based on their position in [o/Fel-[Fe/H] space. G-type dwarfs
were considered to be the optimal tracers of the structure of the
disk as they are most luminous stars whose main-sequence
lifetimes are larger than the age of the disk at practically all
metallicities. Separated in this way, the spatial distribution of
each MAP is well fit by a single-exponential profile both
radially from the Galactic center and perpendicularly from the
plane of the disk, indicating that the disk is likely composed of
a more continuous distribution of populations rather than just
the classical separation into thin and thick disk components
(see also Bovy et al. 2012; Rix & Bovy 2013).

By independently fitting an action-based distribution func-
tion and Galactic potential to each MAP in position—velocity
phase-space, the authors are able to measure the vertical force
at |Z| = lkpc as a function of Galactocentric radius in the
region 4 < R < 9 kpc; this quantity is directly proportional to
the surface density of stellar mass, X,. Including the
contribution from all MAPs, the authors are able to make the
first dynamical determination of the total stellar surface-mass
density at the Galactocentric radius of the Sun,
2, (Ro) = 38 + 4 Mg pc?; this is measured directly from the
mass distribution of substellar objects, main-sequence stars,
and stellar remnants, as opposed to inferring it from their
luminosity (cf. Jurié et al. 2008). Similarly, the mass-weighted
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scale length determined from all MAPs is L, = 2.15 + 0.14
kpc.

Assuming Ry = 8 kpc and accounting for the uncertainty and
covariance in L; and Z.(Rp), Bovy & Rix (2013) find

M2 = 4.6 + 0.3 x 10'° M. They also find that increasing R,

to 8.5 kpc in their model produces a 1.5 x 10'° M, increase in
M,; this effect approximately scales linearly for intermediate
radii. The scale length and local surface density of the disk are
independent of Ry. For our purposes, it is important to include
the current uncertainties in R, into our model of the Milky
Way, and so we employ the following process for this study:

(I) We model the covariance between the local surface
density and scale length in this model by calculating
24(Ry) as a function of L;. To do so, we first fit for a
linear mapping between these two parameters based on
the 2D joint-posterior PDF that describes them (provided
by J. Bovy 2013, private communication). This relation
gives the appropriate value of X, (Ry) for a given value of
L,. We then determine what uncertainty in X, (Ry) would

yield the Bovy & Rix (2013) error of 0.3 X 10'° Mg, in

MZ% using Equation (17) after this covariance and the
errors in L, are accounted for.

() We assume Ry = 8.33 + 0.35kpc from Gillessen et al.
(2009), which is estimated by fitting the orbital
parameters of 28 stars in near-orbit of the Galaxy’s
central massive black hole, building upon 16 years of
observations, and taking into account both random and
systematic errors. This result is in excellent agreement
with other recent measurements of R, (e.g., Ghez et al.
2008; Vanhollebeke et al. 2009; Sato et al. 2010;
Chatzopoulos et al. 2015), with a large enough error to
encompass the variation in results among different
methods.

(III) Given dM?/dR, from Bovy & Rix, we can then predict
both the mass that would have been measured by Bovy &
Rix for different Ry and the uncertainty in that estimate
due to measurement errors in L; and X4 (Ry) alone.

The overall goal of this study is to produce updated and
accurate estimates of the total stellar mass and SFR of the
Milky Way that may be directly compared with those
properties measured for any external galaxy. In particular, we
aim to be consistent with the definition of M, and M, as
measured for external galaxies in the MPA-JHU catalogs
(Brinchmann et al. 2004), which assume the Kroupa IMF and
that M, includes the contribution from both main-sequence
stars and remnants, but not brown dwarfs (BDs), in accordance
with the assumptions made for the stellar spectral evolution
models of Bruzual & Charlot (2003). The dynamical estimate
of £,(Ry) from Bovy & Rix (2013) effectively includes BDs,
so one way to get the density we want is to subtract them off.

The BD mass function (ie., (M) x M~ where
0.005 < M /Mg < 0.1) appears to have a power-law index in
the range —0.5 < a < 0.5 (Cruz et al. 2007; Kirkpatrick et al.
2012; Burningham et al. 2013; Day-Jones et al. 2013). We
normalize the mass function so that the portion corresponding
to LO-L3 BDs, i.e.,, objects with masses in the range
0.03 < M /Mg < 0.05 (following the models of D’Antona &
Mazzitelli 1997, updated 1998), integrates to a total number
density of 1.7 x 1073pc™ (matching Cruz et al. 2007).
Accounting for the range of possible « values, we then
integrate £(M) X M over the entire BD mass range to find a
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Table 3
Disk Model Parameters
Parameter Value Units Description Reference
Ry 8.33 £0.35 kpc Galactocentric radius of the Sun Gillessen et al. (2009)
L, 2.15+0.14 kpc Scale length of exponential disk Bovy & Rix (2013)
2. (Ro) 31.75L4/kpc— Mg Local surface mass density of MS (J. Bovy 2013, private communication)
33.5125 + 2.89 pc stars and remnants for a given L,

MZ2(Ro, La, Z+(Ro)) See Equation (18) Mo

The total stellar disk mass

Bovy & Rix (2013)

from Equation (17), given Ry and L,

Notes.

 See Section 4.1. This relationship accounts for the covariance between the dynamical estimates of L, and Z(Ry) from Bovy & Rix (2013), while also subtracting

the contribution from brown dwarfs, Xgp(Ry).

mass density of ~2.5-3 x 10™* Mg, pc™. Lastly, as required for
a single-exponential disk profile, we multiply this by 2 times a
scale height of the disk of h, = 400 pc (Bovy & Rix 20132,
yielding predicted BD surface densities of ~5-6Mgpc ~.
Earlier measurements, however, have yielded lower surface
densities at ~0.5-2 Mg pc™> (Fuchs et al. 1998; Flynn et al.
2006, and references therein). Based on these analyses, we
conservatively assume that the local surface density of BDs is
in the range 0.5 < Zp(Ry) S 6 Mg pc_z; assuming a uniform
distribution over this range, we find Xgp(Ry) = 3.25 + 1.59
Mg pc2. Subtracting this from Bovy & Rix’s dynamical
estimate, we find £, (Ry) = 34.75 + 4.30 Mg pc_z.

Alternatively, we could compare to the stellar surface density
estimate from Bovy et al. (2012), which omits BDs but also
white dwarfs (WDs) that we want to include. To remedy this,
we collect a number of literature estimates of the spatial density
of local WDs: Oswalt et al. g1996) find 0.0076 pc; Leggett
et al. (1998) find 0.0034 pc™; Jahreif & Wielen (1997) find
0.005 pc™; Knox et al. (1999) find 0.00416 pc™*; Holberg et al.
(2008) find 0.0048pc™; and Sion et al. (2009) find
0.0049 pc™. Using the mean and standard deviation of this
sample, we assume the local volume density of WDs is
pwp = 5.0 + 1.4 x 1073 pc™. Following our disk model, we
multiply this by 2 times a scale height of i, = 400 pc (Bovy &
Rix 2013, and ascribing 10% error) and an average WD mass
of (M)wp = 0.65 + 0.01 My (Falcon et al. 2010) to find
the local surface density of WDs Zwp(Rp) = pwpX
2h, X (M)wp = 2.6 + 0.8 Mg pc 2. As a consistency check,
we add this to the Bovy et al. (2012) photometric estimate of
32.0+3.2Mg pc (due to main-sequence stars, assuming the
Kroupa IMF and 10%  uncertainty),  yielding
2, (Ro) = 34.6 + 3.3Mg pc?; this is in excellent agreement
with the corrected dynamical estimate, which we adopt for the
remainder of this study, given its more conservative error
estimate. For convenience, we tabulate all parameters of our
disk model, and their interdependencies, in Table 3. Plugging
these expressions into Equation (17), any realization of the
total stellar disk mass from our MC simulations is a function of
the Galactocentric radius of the Sun and the scale length
(independently drawn from their attendant probability distribu-
tions):

M?2(Ro, Lq) = 27(31.75Ly/kpc — 33.5125 + 2.89)

x (La/kpe) exp(8 kpe/Ly)
+ 3(Ro/kpe — 8) x 10'° Mo, (18)

4.2. Monte Carlo Techniques

As we shall see in Section 4.3, many estimates included in
our Galactic bulge+bar mass data set are dependent on
assumptions made about the values of R, and/or M2, and
hence depend upon all of our disk model parameters. However,
as denoted in Table 3, the true value of these parameters is not
perfectly known; we can describe our prior knowledge of each
one by a probability density function. In order to propagate the
uncertainties in these parameters’ values into the resulting
posteriors describing the stellar mass of the disk and bulge, as
well as their combination for the total stellar mass of the
Galaxy, we perform a series of MC simulations.

Unlike the parameters describing our “bad”-measurement
models (©), we are uninterested in producing new results for
our disk model parameters. We have much greater confidence
in the priors we have chosen for Ry, L, and X, (Ry) based on
the more direct observations described in the previous section
than anything we would infer about those quantities from the
set of bulge mass measurements. Therefore, in this application
we want to ensure that the results of our HB formalism will
reflect the information contained in the priors in Table 3. We
will collectively denote the set of disk parameters as N, as we
are uninterested in allowing the M% data to modify any
conclusions about what the values of those “nuisance”
parameters may be. Formally, we are making the assumption
that P(N'|D) = P(N')—i.e., that our state of knowledge of
the nuisance parameters is not affected by the bulge data set—
and we refer to this as the “strict-prior” method below. In this
framework, our procedure is as follows:

(I) We independently and randomly generate a sample of 10°
values of Ry and L, which collectively reproduce the
respective mean and standard deviation given in Table 3.
Then for each realization of the scale length of the disk,
Ly ;, we randomly draw a corresponding value of 2, (Ry);
based on the relationship listed in Table 3.

(II) For each of the 10° sets of randomly drawn parameters,
N = {Ro, L;, Z.(Rp) }i, we calculate the corresponding
disk mass, M 4, using Equation (18). The result is a
distribution of possible Galactic disk masses, which we
normalize to produce P(MZ|D). Note that this is
consistent with our strict-prior assumption that
P(N'|D) = P(N), and so the fraction of times that
M, ;¢ calculated from the N; occurs in the MC will be

proportional to P (N).
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Table 4
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The Galactic Bulge+Bar Mass Data Set

M2 + 16 Ry Assumed M2 + 16 (Ry = 8.33 kpc)
Reference (10" M) (kpc) Constraint type Iea (10" Mg)
Kent (1992) 1.69 £0.85 8.0 Dynamical 1 1.76 £ 0.88
Dwek et al. (1995) 2.11 £0.81 8.5 Photometric 2 2.02+0.78
Han & Gould (1995) 1.69 + 0.85 8.0 Dynamical 1 1.76 £+ 0.88
Blum (1995) 2.63+£1.32 8.0 Dynamical 1 2.74 £1.37
Zhao (1996) 2.07 £1.03 8.0 Dynamical 1 2.15+£1.08
Bissantz et al. (1997) 0.81 £0.22 8.0 Microlensing 0 0.81 £0.22
Freudenreich (1998) ° 0.48 4+ 0.65 Photometric 0.48 £+ 0.65
Dehnen & Binney (1998) 0.61 +0.38 8.0 Dynamical 172 0.62 + 0.38
Sevenster et al. (1999) 1.60 + 0.80 8.0 Dynamical 1 1.66 + 0.83
Klypin et al. (2002) 0.94 £0.29 8.0 Dynamical 1 0.98 £ 0.31
Bissantz & Gerhard (2002) © 0.84 +0.09 8.0 Dynamical 1 0.87 £ 0.09
Han & Gould (2003) 1.20 £ 0.60 8.0 Microlensing 0 1.20 £ 0.60
Picaud & Robin (2004) 0.54 +£1.11 8.5 Photometric 0 0.54 +£1.11
Hamadache et al. (2006) 0.62 £ 0.31 None Microlensing 0 0.62 + 0.31
Wyse (2006) 1.00 + 0.50 None Historical review 0 1.00 £ 0.50
Lépez-Corredoira et al. (2007) 0.60 £ 0.30 8.0 Photometric 2 0.65 +0.33
Calchi Novati et al. (2008) 1.50 £ 0.38 8.0 Microlensing 0 1.50 £ 0.38
Widrow et al. (2008) 0.90 £0.11 7.94 Dynamical 1 0.95 £0.12

Note. Bulge mass estimates, Mf, listed in this table have been converted to the Kroupa IMF. See Section 4.3 for further notes on individual estimates.

3 denotes the assumed relationship between each M2 estimate, based on the constraint type, and the R, assumed; i.e., M « Roﬂ .

° Value (in both cases) calculated assuming M% = 5.17 x 10'® Mg, and Ry = 8.33 kpc. B/D results are published as a function of Ry, so no scaling relation needs to

be assumed.
¢ Values provided by McMillan (2011).

(II1) We determine the value of each literature M% measure-
ment (listed in Table 4) that would have been obtained
assuming these parameters are correct. This ensures that
all measurements make consistent assumptions about the
structure of the Galaxy, allowing them to be combined
fairly. We refer the reader to the following section for
these details.

(IV) For each iteration of III, along with the prior chosen for
Mf, which we will detail in Section 4.4, we calculate the
joint k-dimensional posterior P(®|D, N;) via an HB
analysis, as described in Section 2. After marginalizing
out the other parameters in O, each realization of the
bulge mass posterior can be written

P(DIMY, N;)P(MF)
P(D|N;) '

P(MEID, A7) = (19)
applying Bayes theorem as usual. By the definition
of marginalization, P(M2|D) = /P(MB,N'|D)dN;
and applying the definition of joint probability and
our strict-prior assumption, this is equal to
/P(Mle, NYP(N)YAN'. If we draw values N; from
our prior distribution P (N'), this integral will be equal to

R,
lim ;,;P(Mflp’ No). (20)

since the fraction of times that N; occurs in the MC will
be proportional to P (N'). Note also that Bayes’ theorem
allows us to rewrite the denominator in Equation (19) as
P(D|N;) = P(N;|D)P(D)/P(N;), and by applying our
strict-prior assumption this reduces to simply P (D).
Thus, in order to construct the combined M2 result for a

given model of “bad” measurements, we are able to
simply average the individual posteriors from the MC
realizations:

| l()()()p(DlME, ./\/})P(Mf)
1000 Z P(D)

i=1

P(M§|D) = 1)

The posterior PDF for each of the other parameters of the
“bad”-measurement model are calculated in the same
way. In addition, we record the AIC, BIC, and K for each
iteration, yielding a distribution of values. In practice, we
find that 10° realizations produces a standard error in the
median A log,, K/AIC/BIC values much smaller than
0.5, which is sufficient to assess differences in the utility
of different models securely (compared to our A = 2
criterion for significance).

(V) We also produce a posterior for the total stellar mass from

each iteration, P(M,|D, N;), in a model-consistent
manner by simply defining M, ; = M5 + M, ;. Again,
we can average the individual posteriors, P (M, |D, N;),
to obtain P(M,|D), similar to Equation (21). Lastly,
we also calculate the model-consistent posterior
describing the bulge-to-total mass ratio by normalizing
the distribution of values (B/T); = (P(M2|D, N}))/
(P(M4|D, N))) to integrate to unity, where angled
brackets denote the mean of the enclosed posterior
distribution.

One way of thinking about the strict-prior method is in terms
of the Bayesian definition of probability as a degree of belief:
P(ME2|D, N;) represents what we would conclude about M%
based on living in a Galaxy with parameters N;. The prior
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P (N') represents our belief of how likely the parameter values
N are to be correct compared to other possible values, and
hence is the correct weighting to determine what we would
believe about P (M2 | D), taking into account all possible values
of M and how probable we believe each of those values are.
This assumption is appropriate here, given that the bulge mass
determinations depend only very indirectly on disk parameters,
so we would place little faith in constraints on disk properties
that came from the bulge mass data set as opposed to the much
more direct methods now available.

An alternative method would be to sum the likelihoods,
P(D|M2, N;), and normalize that result to unity (which we
will refer to as the “weak-prior” method). This is equivalent to
calculating the evidence-weighted average of the posteriors
calculated in the course of the strict-prior method. In this case,
the posterior we calculate incorporates the assumption that
P(N'|D) # P(N): ie., that our state of knowledge of the
nuisance (disk) parameters should be influenced by the set of
bulge mass measurements. Hence, all the parameters in Table 3
would be treated in the same way as those contained in ©,
differing only in the informativeness and nature of the priors
applied. Effectively, the weak-prior method assumes that
values of the parameters N under which the data were most
likely to have been observed should be given greatest weight,
even if they are disfavored by our priors.

We have much greater confidence, however, in the priors we
have chosen for Ry, L; and X,(R;y) based on more direct
observations than anything we would infer from the set of
bulge mass measurements, and so the weak-prior method
appears to be inappropriate here. In practice, the posteriors for
the disk mass, P(Mf |D), and hence also for the total mass,
P (M,|D), differ significantly (with a mean differing by ~10)
between the two methods; however, the bulge mass estimate
differs little between the strict- and weak-prior methods (with a
mean differing by ~0.10).

4.3. A Uniform Sample of Bulge+Bar Mass Measurements

In this study, we define M? as the excess mass over a single-
exponential disk in the total stellar mass budget for the Galaxy.
We begin by searching the literature for measurements of the
combined stellar mass of the bulge, pseudo-bulge, and/or bar
components of the Milky Way, which collectively fall into the
category of MZ. A diverse set of methods, models, and
observations has been used to make these estimates. For
instance, Dwek et al. (1995) photometrically determined the
Galactic bulge morphology, luminosity, and mass using triaxial
bar-like models constrained by the COBE/DIRBE observations,
measuring M2 = 1.3 £ 0.5 x 10'°Mg. In contrast, Klypin
et al. (2002) consider ACDM-based models for the Milky
Way, accounting for the mass and angular momentum of the
DM halo, constrained by a variety of kinematic measurements,
to estimate that M2 ~ 1 x 10'" M. Alternatively, Picaud &
Robin (2004) use MC techniques to fit the Besangon model
of SPS to the observed near-IR luminosity of the bulge
using observations from the DENIS survey, finding M%=
2.4 + 0.6 x 10'°Mg. These are only a few of the alternatives;
we provide the entire list of studies included in our Galactic
bulge+bar mass data set, hereafter denoted as D,,, in Table 4
for reference.

The incorporated studies use a heterogeneous mixture of
assumptions and models for the Galaxy; we follow the basic
model of Chomiuk & Povich (2011) and attempt to place them
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on a uniform basis here. One of the most common sources of
variation is the adopted value of the Galactocentric radius of
the Sun’s orbit, Ry. For instance, using the virial theorem one
can demonstrate that kinematic estimates of the Galactic bulge
+bar mass will be directly proportional to Ry. On the other
hand, photometric estimates of the luminosity of the bulge,
bazsed on the flux measured from our location, should scale as
Ry

A bulge mass inferred from the microlensing event rate
observed toward the Galactic center, however, has a more
complex dependence on R,. The measured rate of microlensing
events can be directly converted into an optical depth,
T = Tpulge + Tdisk» Which is the sum of the contribution from
the stars in the bulge and the intervening part of the disk.
Hamadache et al. (2006) show that M? Thulge X Rbulges
where Ry is the radius of the bulge, which itself should be
proportional to R, based on geometric arguments (i.e.,
Rpuige = Ro tan /2, where 6 is the angular diameter of the
bulge). Unfortunately, the typical contribution from disk stars,
which we would need to subtract in order to obtain g, is
~7/3 (Sumi et al. 2003; Hamadache et al. 2006, and references
therein) and turns out to be highly sensitive to the chosen value
of Ry. As an example, if we are to assume that g is
proportional to the mass of disk stars between us and the bulge,
which in turn depends on the total mass of the disk, the disk
model described above yields d In Mf/d In Ry ~ 5.7; ie.,

Zaisk should scale roughly as R. Based on this complexity, we

assume for the purposes of this study that estimates of M2
based on measurements of 7 do not scale well with Ry,

In order to combine the M2 estimates in our data set into one
aggregate result, after choosing a value of R, from our
Gillessen et al. (2009) prior, we renormalize each result to that
Ro value using the appropriate scaling relation. Unless
otherwise noted, the central value and error bar are scaled by
the same factor in order to ensure the fractional error remains
unchanged (this is equivalent to holding the error bars constant
in log space), as essentially none of the literature estimates
include the uncertainty in Ry in their error estimates (a problem
that our MC technique will fix). For reference, we list the type
of observational constraint and appropriate Ry power-law index
used to scale to each M estimate in Table 4. We note that if we

assume that microlensing-rate-based measurements of M2

scale as R, (as bulge stars are the dominant contribution to
7), rather than treating them as independent of Ry, the change in
our results proves to be negligible.

As discussed in Section 4.1, our definition of stellar mass
includes the contribution from remnants, but not that from
substellar objects. Kinematically derived measurements of the
bulge mass in our data set will not reflect this distinction.
Therefore, we multiply the results from dynamical measure-
ments by a normalization factor of 0.94 £ 0.02 to exclude the
contribution from brown dwarfs. We derive this scale factor by
varying the power-law index of the IMF in the brown dwarf
mass range (0.005 < M /Mg < 0.01) from —0.5 to 0.5 (Cruz
et al. 2007; Kirkpatrick et al. 2012; Burningham et al. 2013;
Day-Jones et al. 2013) and including their contribution within
the Bruzual & Charlot (2003) model using solar metallicity and
the Kroupa IMF over the main-sequence mass range.

Unlike dynamically constrained models of the Milky Way,
which are indifferent to the mass distribution of the stellar
populations, those which rely on photometric constraints (and
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thus mass-to-light ratios) to estimate M? will depend strongly
on the IMF of choice. It is important then to set all
measurements of this type on the same footing before applying
the HB analysis by converting them to the same IMF. As
previously discussed, we choose that to be the Kroupa IMF in
accordance with the MPA-JHU spectrum measurements
(Brinchmann et al. 2004).

The HB analysis we apply to estimate M2 requires an error
estimate for each independent measurement. Many of the
studies in the literature, however, do not provide error
estimates. We therefore must estimate the uncertainty in each
measurement lacking an error bar in a uniform and unbiased
manner; we do this in either one of two ways. First, for any
study that lists a single M2 result sans an error bar, we
conservatively choose the error to be 50% of the value.
However, if the authors instead provide a list of results
corresponding to a variety of models or parameters explored,
we then find the standard deviation of these listed values and
add this in quadrature to 25% of their favored value to produce
an error estimate.

Lastly, as we will detail below, the central value of many of
the MZ estimates in our data set will vary with the disk
parameters that we draw for each MC simulation. In such a
case, it becomes problematic to use the median estimated value
(which will vary) as a reference value that multiplies Q or F in
those models of unreliable data. Consequentially, for the stellar
mass portion of this study we always multiply Q and F by
10'°M, when augmenting the errors estimates of “bad”
measurements. For example, this means that Q = 0.5 corre-
sponds to adding 0.5 x 10'° Mg, in quadrature to the nominal
error bars when accounting for the possibility that a measure-
ment is inaccurate (compare to Equation (3)).

In the following list, we detail any studies included in our
analysis of M? that require further special treatment to be
comparable to the others in Table 4:

Picaud & Robin (2004 ): This work uses the Besangon model
of SPS (see also Robin et al. 2003) to simultaneously
constrain the mass of the bulge and thin disk through direct
comparison with near-IR star counts in ~100 windows of
low extinction in the Galaxy. The thin disk is divided into
seven distinct age components with a two-slope IMF, while
the bulge is modeled as a single older population with a
Salpeter IMF; all of these populations are converted to follow
the Kroupa IMF as the first step in our renormalization
process. Additionally, the Besangon model features a double-
exponential profile for the thin disk. This disk model has a
hole at the center, so the same amount of mass at the center
of the Galaxy would correspond to a greater bulge mass than
in a non-holed model. For consistency, we integrate the
holed density profile to determine the mass of the Besancon
thin disk within the bulge radius of 3.71 kpc, and subtract
this value from the single-exponential disk mass within the
same radius for each realization of our disk model. The
difference we calculate corresponds to the portion of the
Picaud & Robin bulge mass estimate (2.4 + 0.6 X 10'" M)
that has already been included in the Bovy disk, so we
subtract it off. Given that this correction is uncertain, we also
add in quadrature to the nominal errors an amount equal to
50% of the holed-disk correction when assuming
Ry = 8.33kpc; ie., 50% of 1.86 x 10'°My. Picaud &
Robin find that changes in the model mass when Ry is
changed are comparable in impact to the other variations
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among the models studied, and so we do not apply any Ry
scaling beyond this correction. Changes in R, affect their
models in multiple ways, rendering any simple scaling of
their Mf value unsuitable. In the end, the results of Picaud &
Robin (2004) are included in our data set as a value of
M3 =0.54 + 1.11 x 10'° M, for Ry = 8.33 kpc and best-fit
Bovy disk parameters; for simplicity of analysis, this error
estimate is used regardless of disk parameters.

Zhao (1996 ): This work models the disk with the Miyamoto
& Nagai (1975, hereafter NM) potential, whose profile
roughly resembles that of the double-exponential disk.
Ideally, we would make the same correction using our disk
model as we have done with Picaud & Robin (2004).
However, the authors have normalized the NM profile to
produce a total disk mass M2 = 8M¥%, chosen so as to
incorporate the dynamical effects of the dark halo and
produce a flat rotation curve at 1 < R < 3kpc from the
Galactic center. We find, however, that this produces an
extremely high surface density at nearly all radii within the
disk, and indeed the authors note that this model does not fit
the COBE map data except near the center. Since we cannot
disentangle the dark mass from the stellar mass in this model,
we do not attempt to do a correction as for Picaud & Robin
(2004), since we would not have confidence in its accuracy.
To account for that inability to correct, we increase the errors
on this estimate to 50% of the derived bar mass. Lastly, as
this is a dynamical measurement, we remove the contribution
of brown dwarfs to the bulge mass budget by multiplying by
a factor of 0.94 £ 0.02. It is therefore included in our data set
as a value of M¥ = 2.07 + 1.03 x 10'°My,. We note that
changes in the treatment of this measurement yield a much
smaller difference in our combined results than our final
estimated errors.

Dwek et al. (1995): As mentioned above, this work
constrains the mass of the Galactic bulge using photometry
taken from the COBE/DIRBE observations, measuring
M2 = 1.3 + 0.5 x 10'° Mg, where a Salpeter IMF has been
assumed. We convert this measurement to the Kroupa IMF
by multiplying it by 1.62, derived using our definition of
stellar mass and the assumptions made for the stellar models
of Bruzual & Charlot (2003). Hence, we include this
measurement in our data set as a value of
M% =211 + 0.81 x 10'° M.

Freudenreich (1998 ): This work favors a bar-to-disk (B/D)
luminosity ratio of 0.33 based upon matching their Galactic
model to IR observations of the Milky Way from COBE.
This model again includes a holed stellar disk. We integrate
this profile both with and without the hole implemented,
under the assumption that the mass gained by the disk when
excluding the hole was previously incorporated into the bar,
in order to calculate a hole-less B/D value. We note that the
results of this study are published as a function of Ry in their
Table 4, allowing us to interpolate from this table to obtain
B/D at a given R, instead of assuming a scaling relation.
Thus, for each MC simulation we include within our data set
a value of M2 = M, i« x (B/D), where (B/D) represents the
hole-less model bar-to-disk ratio corresponding to Ry ;. We
ascribe a 50% error bar to this value, accounting for
uncertainty in the mass-to-light ratios of the bar and disk.
Similarly to the Picaud & Robin (2004) estimate, we
conservatively add in quadrature to this error estimate a value
of 50% of the holed-disk correction at Ry = 8.33 kpc. As a
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nominal value, we list M? =047 + 0.65 x 10°°M;, in
Table 4, the result from assuming our standard disk model
values. This overall error estimate is held constant for other
values for the disk parameters.

Dehnen & Binney (1998 ): This study provides a parameter-
ized model of the mass distribution in the Galaxy fitted to
several observational constraints. They assume a single-
exponential profile for the stellar disk, much like Bovy & Rix
(2013). Tables 3 and 4 of their paper list the resulting bulge
mass when varying a large number of parameters in the
model. Comparing models 2, 2a, and 2b we find that Mf

in their model approximately scales as ~(Ro/8 kpc)'/2.
To provide the central value of this estimate we
interpolate among M2 results from their models 1-4
using the value L;/Ryp =026 from our standard disk
model detailed in Section 4.1. We estimate the random
uncertainty in this value via propagation of errors: o (M%)2~

i[Mf(Ld +o(Ly) -ME@L, - G(Ld))]z. In addition, we

estimate the systematic error to be the standard deviation of
the results from Dehnen & Binney’s models 2c—i, which we
add in quadrature to the random error. Lastly, as this is a
dynamical measurement, we remove the contribution of
brown dwarfs to the bulge mass budget by multiplying by a
factor of 0.94 + 0.02. Overall, this is included in our data set
a value of M2 = 0.65 + 0.38 x 10'° M,

4.4. Setting a Prior on M5

To place a prior on the mass of the Galactic bulge, we again
consider the properties of spiral galaxies previously observed in
the local universe. Some spirals appear to have no bulge
component, whereas in extreme cases the bulge-to-total ratio
can be as large as B/T ~ 0.8 (e.g., Simien & de Vaucouleurs
1986; Gadotti 2009). Given our prior understanding of the total
mass of the Milky Way to be of order ~5 x 10'°M, (e.g.,
McMillan 2011 and references therein) we assume the mass of
the Galactic bulge can be anywhere in the range 0—4 x 10'° Mg,
with equal weighting. This is represented by a flat distribution,
such that

1 -10 B 10
— < <
0, otherwise.
4.5. Stellar Mass Results
Table 5 shows the results for each model of “bad”

measurements from our HB analysis. We list the optimal value
of n, Q, or F, as appropriate for each model, which we take to
be the value corresponding to the peak of the marginalized
posterior PDF for these parameters. In Figure 4, we marginalize
out M2 and show the resulting joint posterior for Soooa and F
normalized to a peak value of 1. We can see in this case that the
likelihood is maximized near fgood ~ 1 and F ~ 0, similar to

the SFR results in Section 3.3 which favored Joood ® 1 and
minimally adjusted error bars. If we are to then marginalize out
feood from the joint posterior, this yields the result P (F|D)
shown in Figure 5 as a solid green curve. Assuming that

fgood = 0 (i.e., that all included measurements are inaccurate to
some extent) produces the the dashed green curve in Figure 5;
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this is equivalent to the curve produced by cutting through the
Jaood = 0 plane in Figure 4.

All model-comparison criteria listed in Table 5 result from
comparing values with the all-“good” model for each
realization. For example, A log,, K for the free-n model
reflects the mean and standard error of the set
{loglo(Kfree_,,/Kau_“good”)i}, and similarly for AAIC and
ABIC. In accordance with the likelihood peaking on the
Jeood = 1 plane, as seen in Figures 4 and 6, all criteria values
indicate that the best fit of the data results when the fewest free
parameters are employed in the HB analysis. That said, several
of the other models listed in Table 5 have criteria values that do
not differ enough to be statistically significant (i.e., their
differences in A log,, K, AAIC, or ABIC are less than 2).
Again, similar to the SFR results, the model with highest K is
the one where all measurements are treated as accurate,
indicating that once differences in the assumed Galactic model,
IMF, and definition of M, are accounted for, no correction for
systematic effects is needed in order to relieve any tension in
these measurements. This is supported by the AIC and BIC
values as well. Taking the all-“good” model as our fiducial
measurement, we therefore find the stellar mass of the Galactic
bulge+bar to be M? = 0.91 + 0.07 x 10'°Mgy; a comparison
with the other values in Table 5 shows that this estimate is quite
robust to any way we account for “bad” estimates in the HB
analysis. We have also tested the impact that the Bissantz &
Gerhard (2002) and Widrow et al. (2008) M¥ estimates make
on our final results, as these two measurements are more
strongly peaked than the other estimates and are centered at
similar bulge mass values (see Figure 7). We find that doubling
the nominal errors on both of these estimates produces only a
25% increase in the error of our aggregate result and a
negligible change to the mean value, indicating that these two
estimates are not dominating our final estimate.

Lastly, we show in Table 5 the IVWM of the nominal values
from our M% data set (Table 4) with no corrections to uniform

Ry and M%. We can see that the IVWM is more strongly pulled
by lower-valued outliers in comparison to the HB results. This
is likely in large part the result of the heterogeneous mixture of
R values in the sample, as the all-“good” model is equivalent
to 10° MC simulations of the IVWM, but rescaling all
measurements to reflect Ry = 8.33 + 0.35 kpc (Gillessen et al.
2009); in this case, the all-“good” model corresponds to the
average of the IVWM from our 10° MC simulations, rather
than the IVWM of the set of original measurements. With
18 M% estimates in our data set, and thus 17 degrees of

freedom, we expect 68% chance of finding y? in the range
[11.31, 22.68] and a 95% chance of it being in the range [7.56,
30.19]. Hence, the observed y? = 14.03 indicates only modest
tension among the measurements; ~2/3 of the time one would
observe a y? this large or larger.

Similarly to our SFR analysis, we have tested whether
common-mode systematics have a large impact on our bulge
mass estimate, an effect our HB method is unable to account
for as we assume that errors from each study are random
compared to each other. As initially discussed in Section 3.3,
this involves applying the HB method using the all-“good”
model to a bootstrap resampling of the MZ data set in two
different ways. In the first case, we draw only one measurement
at random from all those which use a common measurement
technique (i.e., one of the four categorizations listed in Table 4
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Table 5
Combined M? Results For Various Model Assumptions
Optimal M2 + 16
Model Value® (10" Myg) K° AAIC® ABIC Alog,, K

Seooa free—Some of the measurements have inaccurate error bars.

Free-n 1.00 0.91 £0.07 3 4.00 £ 0.00 5.78 £0.00 -0.66 £ 0.00
Free-Q 0.00 0.91 £0.08 3 4.00 £ 0.00 5.78 £0.00 —-0.45 £ 0.00
Free-F 0.08 0.92 £0.08 3 4.00 £ 0.00 5.78 £0.00 —-0.42 £ 0.00
Ryq flat N/A 0.91 £0.07 2 2.00 £ 0.00 2.89 £0.00 —0.86 £ 0.00

feooa = 0—AIl of the measurements have inaccurate error bars.

Free-n 1.00 091 £0.08 2 2.00 £ 0.00 2.89 £0.00 —-1.20 £ 0.00
Free-Q 0.00 0.93 £0.09 2 2.00 £ 0.00 2.89 £0.00 —-0.83 £0.00
Free-F 0.08 0.94 £0.10 2 2.00 £ 0.00 2.89 £0.00 -0.85 £ 0.00

feooa = 1—None of the measurements have inaccurate error bars.

All-“good™ N/A 0.91 £ 0.07 1

Non-hierarchical combinations of the data.

IVWM*® 0.88 £ 0.06 x? =14.03
IVWM(R, = 8.33 kpc) 0.91 £0.06 72 =13.69

Note. The M2 results are well described by Gaussian distributions, and the values listed in this column represent the mean and lo parameter of fits to these
distributions. The distributions we find for AAIC, ABIC, and A log,, K from the MC simulations are strongly peaked but also highly asymmetric, and so in these
columns we quote the median and standard deviation of the median obtained by bootstrapping these sets of values. Errors of 0.00 indicate that the standard deviation
of the median is «0.01.

# The value of n, Q, or F corresponding to the peak of marginalize posterior PDF for these quantities in each model.

® The number of free parameters in the model. See Section 2.3.4.

€ For each iteration of the HB analysis, we record the AIC and BIC. We then calculate the mean and standard error from the distribution of AIC and BIC values
produced from all 10? iterations for each model. AAIC and ABIC reflects the difference in the mean AIC and BIC value measured from the model which has the
lowest AIC/BIC (here, this is the all-“good” model). We see 10° iterations yields sufficiently small standard errors (i.e., less than 0.5) in order to securely assess
differences of 2, which would indicate a statistically significant difference between models.

d Equivalent to the combined inverse-variance weighted mean (IVWM) from 10° MC simulations, uniformly scaling each estimate to the same R, value from our
Galactic model (see Table 3).

¢ The IVWM obtained from the nominal estimate values listed in Column 2 of Table 4. Essentially, since we have used flat priors, these are the same values we would
find in the all-“good” scenario if we did not use MC simulations to renormalize each estimate to the same choice of Ry. IVWM(R, = 8.33 kpc) shows the results from
the same calculation for the M2 estimates after scaling each to Ry = 8.33 kpc, as in the last column of Table 4.

under the column labeled “Constraint type”), yielding four dominated by that in M2, making our M, result highly
estimates from a unique measurement method. In the second insensitive to the choice of model used in the HB analysis of
case, we draw four measurements at random from the entire list the Galactic bulge+bar mass estimates. The largest sources of
of estimates in Table 4. For each case, we perform this process uncertainty in M2 and M thus come from the values of R, and
1000 times and measure the mean from the posterior L, that we adopt (Table 3). The constraints on these parameters
distribution P(M2|D) for each set of measurements. We find are likely to improve with upcoming Galactic surveys, such as
the standard deviation of the mean to be 0.19 when resampling Gaia, and so we also calculate derivatives of our mass
with only one measurement of each type from the M% data set estimates with respect to each so that they may be easily
and 0.23 when resampling at random from the entire data set. adjusted to reflect any improved information. To do so, we
Again, there is greater scatter between measurements of the simply redo our analysis after independently offsetting either
same type than between random measurements in the data set. parameter by one-half of its error estimate above and below the

central value. The derivative is calculated from the curve

Hence, similarly to our SFR results, we can safely conclude - ALV ¢ !
yielded from Lagrangian interpolation of the resulting three

that common-mode systematics make a negligible impact on . i
our bulge mass results data points. For convenience, we tabulate our stellar mass
The results from our HB analysis and MC simulations for results for each component and their derivatives in Table 6.

P(M2|D) and P(M,|D) are well-described by Gaussian Lastly, we display the PDF for the bulge-to-total mass ratio

of our model in Figure 8§ as a solid black curve, which indicates

a median with the 1o error estimate of B/T = 0.150750%.

10" Mo and My = 6.08 & 1.14 x 10'"Mo. We note that the This is obtained from the distribution of values, (B/T);=

distributions. These correspond to MZ% =517 + 1.11x

mass of the stellar halo component of the Galaxy (~10° My,) is My i5/(My ;5 + My ja), resulting from each self-consistent
negligible compared to the uncertainties in our estimate realization of the Galaxy. Calculating P(B/T) in a model-
(Bullock & Johnston 2005; Bell et al. 2008), and thus we consistent way (i.e., accounting for covariances within our
can disregard its contribution. The uncertainty in M, is model) yields measurably tighter constraints than when doing
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Figure 4. The joint posterior PDF, P (faooa> F1Dum), for the free parameters
describing the Milky Way bulge+bar mass data set, D,,, when applying a
hierarchical Bayesian analysis. The parameter fy0q quantifies the probability
that any one measurement included in Dy, is “good” (i.e., has accurately
estimated error bars), and F denotes the fraction of 10'° M;, used as a floor on
each individual error estimate when treated as not “good” in the model. For
ease of comparison, we have normalized the peak of this distribution to 1. We
see, similar to the results for the Milky Way SFR, that the likelihood, and thus
the posterior, peaks near f,,,q ~ | and F ~ 0, indicating little tension among
the Milky Way bulge+bar mass estimates.

0.8 1.0

so by combining independent estimates of M% and M,. For
example, the blue dashed curve in Figure 8 is the result of
combining randomly drawn pairs of M% and M% values drawn
from the PDFs for each mass component in this study and
assuming M, = MZ + M2, The red dash-dotted curve in
Figure 8 shows the distribution of bulge-to-total luminosity
ratios for a sample of 212 Sbc-Sc galaxies measured from
SDSS by Oohama et al. (2009). The mass-to-light ratio of the
older stellar population in the bulge is higher than that of the
younger stellar disk and so converting this to a bulge-to-total
mass ratio would shift the distribution toward slightly higher
values; however, we can safely assess that Milky Way lies well
within the range of B/T values. Graham & Worley (2008) find
the average bulge-to-disk K-band flux ratio for a sample of 79
Sbc galaxies to be log(B/D) = —0.82, which converts to an
average B/T of 0.13; this compares well with our Milky Way
value.

5. SUMMARY AND DISCUSSION

In this paper we have developed improved constraints on
several of the Milky Way’s global properties. We build upon
the prior measurements found in the literature, joining them
into consensus results using the power of the HB method. This
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feood free
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Figure 5. The posterior PDF, P (F|Dy,), for the floor value, F, defined as a
fraction of 10'°Mg imposed as a minimum error estimate for “bad”
measurements in our Milky Way bulge+bar mass data set, Dj,. These results
are obtained by marginalizing over all possible values of fy,oq (solid curve) or
else by setting f,,,q = 0 (dashed curve). Here we see the competition between

multiple possible solutions within the HB analysis. We note that both curves
are marginalized over all possible values of the stellar mass contained in the
bulge+bar component of the Galaxy, M%.

method (Press 1997, pp. 49-60; Lang & Hogg 2012) takes into
account the possibility of inaccurate measurements being
included in our data sets, and has proven to be quite robust
when varying how we deal with such “bad” measurements. By
incorporating all the information contained in the individual
measurements, we have obtained significantly improved
constraints on the Milky Way properties we investigate. At
the same time, given the expectation that there could be
systematics affecting the Milky Way data, the HB method has
given us confidence in the robustness of our results, even
though Occam’s razor favored the simplest model (i.e., the
IVWM) in the end. For convenience, we tabulate the main
results from this study in Table 6, as well as their derivatives
with respect to the Galactocentric radius of the Sun, Ry, and the
exponential scale length of the disk, L, allowing for our results
to be updated if constraints on these parameters improve.

In our first application, we capitalize on the work of
Chomiuk & Povich (2011), who provide a tabulation of the
SFR estimates in the literature over the last several decades.
The authors make huge strides in placing each measurement on
equal footing by renormalizing them all to the same choice of
IMF and SPS model. Using these updated estimates as our data
set, we find the SFR of the Milky Way to be
M, = 1.65 + 0.19 Mg yr~! (assuming a Kroupa IMF and
Kroupa-normalized Kennicutt 1998 ionizing photon rate).

Next we investigate the stellar mass contained in each of the
major components of the Milky Way. In Table 4, we have
compiled an extensive list of Galactic bulge, pseudo-bulge,
and/or bar mass estimates from the literature. We assume the
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Figure 6. The posterior PDF, P (fy,oq D), for the fraction of “good” M3

measurements, fyood, (i.€., ones having accurately estimated errors) in our bulge
+bar mass data set, D,,;. Each model shown accounts for the inclusion of “bad”
measurements in a different way: the free-n model (solid red) remedies
underestimated errors by multiplying them by a scaling factor of n; the free-Q
model (dashed blue) adds extra error in quadrature to the errors on a
measurement when treated as “bad”; the free-F model (dash-dotted green)
places a floor on the errors of “bad” measurements; while the R,4-flat model
(triple-dot-dashed purple) works to completely disregard a measurement from
Dy when considering it “bad.” Similar to the SFR results, the PDF for all
“bad”-measurement models are peaked around f,,,q = 1, more strongly so for

the free-n and Rq-flat scenarios than the free-Q and free-F scenarios.
Regardless, it turns out that the best model of Dy, i.e., the one favored by the
Bayesian evidence and information criteria, is one where fyo0q is assumed to be
1, instead of allowing it as a free parameter—i.e., an all-“good” model.

single-exponential density profile for the disk laid forth by
Bovy & Rix (2013); we tabulate the adopted probability
distributions for all relevant parameters in Table 3. We then
combine our HB analysis with MC simulations that uniformly
scale each estimate to the same value of R, ensuring
propagation of R, errors into the hierarchical M2 result. The
MC calculations also yield estimates of the stellar mass of the
bulge-+bar, the stellar mass of the disk, and the total stellar mass
in the Milky Way.

Our combined estimate of the bulge+bar mass is
M3 = 0.91 + 0.07 x 10'° M. This estimate has substantially
smaller errors than the individual estimates used to derive it.
We note that the error given not only reflects the random and
systematic uncertainties in each individual estimate, but also
current uncertainties in Ry. Our results show that once we have
renormalized each estimate to reflect the same choice of IMF,
stellar distribution profile for the disk, and definition of stellar
mass that likely there are minimal systematics to further correct
for. We adopt the Kroupa IMF in this study and include the
contributions of main-sequence stars and remnants, but not
substellar material, in our definition of stellar mass in accord
with the MPA-JHU measurements of SFR and M, for external
galaxies found in SDSS.
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Figure 7. The solid black curve shows the aggregate M% result as determined
from our HB analysis when using an all-“good” model and Monte Carlo
simulations to incorporate up-to-date information for the Galactocentric radius
of the Sun, Ry, the scale length of the single-exponential disk, L;. Here, we
have assumed Ry = 8.33 + 0.35 kpc from the work of Gillessen et al. (2009)
and Ly = 2.15 + 0.14 kpc based on the measurements by Bovy & Rix (2013).
For comparison, we overlay the individual estimates from our Galactic bulge
+bar mass data set as dashed/dotted colored lines. Some of these measurements
are in tension with others; the HB methods allows us to account for that tension
in obtaining consensus results. Doubling the error bars on the Bissantz &
Gerhard (2002) and Widrow et al. (2008) M5 estimates (the relatively strongly
peaked dashed red and blue curves) yields only a 25% increase in the error in
our aggregate result, indicating that these estimates are not dominating in our
final estimate.

Under consistent assumptions, we find that the disk mass of
the Milky Way is M2 = 5.17 + 1.11 x 10'© Mg. Our model of
the Galactic stellar disk is based on that of Bovy & Rix (2013),
but we directly incorporate current uncertainties in the
Galactocentric radius of the Sun. Our disk mass estimate is
in broad agreement with other measurements found in the
literature. One of the earliest models of the Milky Way by
Bahcall & Soneira (1980), primarily constrained by star counts
from photometric observations of the Galaxy, yields a stellar
disk mass of 5.6 x 10! Mg. The ACDM-based Milky Way
models by Klypin et al. (2002) favor a range of 4-5 x 10'* M,
Similarly, the kinematically constrained models from Dehnen
& Binney (1998) find the mass of the disk to lie in the range of
4.2-5.1 x 10" Mo,

We find that the total stellar mass in the Milky Way is
M, = 6.08 + 1.14 x 10'° M, by statistically combining the
stellar disk and bulge+bar mass estimates through model-
consistent MC simulations (the mass of the stellar halo
component (~109 M) is negligible compared to our uncer-
tainty). The overall error in our M, estimate is dominated by
that contributed from the disk component, rendering our final
result highly insensitive to any assumptions involved with
combining bulge mass estimates to determine P (MZ|D). In
comparison, McMillan (2011) find a total baryonic mass of
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Table 6

Milky Way Properties and Derivatives
Property Fiducial Result 0/0Ry 0/0L4
M2 091 + 0.07 x 10'° Mg 0.093 x 10" Mg, kpc™ 0.004 x 10' Mg kpc™
M2 517 £ 1.11 x 10'° Mg 3.000 x 10'° M, kpc™ 0.469 x 10' Mg kpc™
M, 6.08 + 1.14 x 10'° Mg, 3.093 x 10'° Mg, kpc™ 0.473 x 10'° Mg kpc™
BIT 0.150*00%% -0.061 kpc™! -0.011 kpc™'
SFR 1.65 4 0.19 Mg yr~! 0 Mo yr~' kpc™ 0 Mg yr~" kpc™
sSFR 271 + 0.59 x 107" yr™! —1.381 x 10~ yr' kpc™ —2.111 x 10712 yr~' kpc™

Note. Derivatives of My are not simply the sum of the derivatives for M2 and M2 due to covariances between the parameters in our model. Derivatives of B/T
represent the change in the median bulge-to-total mass ratio with respect to the appropriate parameter, measured independently from any other quantity in this table.
The sSFR and its derivatives, however, are calculated directly from the M, and M, results; e.g., here a(M*/M*)/ ORy = —M, M;z X aM*/ 0R since 0M*/ 0Ry = 0.

30

Model—consistent
Random sampling
mimimmm SDSS Sbc—Sc

P(B/T)

Ol
0.1

0.2
B/T

Figure 8. The solid black curve shows the PDF for the bulge-to-total mass
ratio, B/T, of the Milky Way as determined by our HB analysis. This is
produced through Monte Carlo simulations where each realization of the bulge
+bar mass (M, ;8) and disk mass (M, ;¢) are determined using the same values

for structural parameters for the disk, {RO, Ly, 2+(Ro) }l., randomly drawn from

their respective distributions listed in Table 3. The histogram of values
(B/T); = My ;8/(My ;8 + M, ;) is then normalized to integrate to unity. The
dashed blue curve shows the result of simply drawing from the fiducial
estimates of P(MZ|D) and P(MPZ|D) from our model independently.
Calculating B/T in a model-consistent manner yields a noticeably tighter
constraint than when not accounting for covariances between M2 and M2,
Lastly, we overlay the distribution of B/T luminosity ratios for a sample of 212
Sbe-Sc galaxies measured from SDSS by Oohama et al. (2009). Although
converting to B/T mass ratios would produce a slight shift toward higher
values, we see the B/T ratio for the Milky Way is not unusual for galaxies of its
Hubble type.

6.43 + 0.63 x 10'° My, from which we can subtract the atomic
and molecular phase gas mass of 9.5 + 3.0 X 10° Mg (Dame
1993, corrected for helium contributions by Flynn et al. 2006),
giving M, = 5.48 + 0.70 x 10'° Mg, In addition, Flynn et al.
(2006) give a back-of-the-envelope calculation for M, finding
it to be in the range 4.85-5.5 x 10'°Mg. Our estimate for the
total stellar mass compares well with the results of these two
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recent studies, but takes advantage of a large sample of bulge
mass measurements found in the literature and is founded on
improved knowledge of several of the properties of the Galactic
disk from SDSS. Again, we stress that all of our mass results
assume a Kroupa IMF and an exponential profile for the
Galactic disk to match the assumptions used in studies of
extragalactic objects.

Ultimately, the constraints we are able to place on the stellar
mass of the disk component as well as the total stellar mass of
the Galaxy depend strongly on the value we assume for R,. For
our main results, we have chosen the Gillessen et al. (2009)
estimate of 8.33 £ 0.35 kpc for its direct determination of the
distance to Sgr A* (i.e., the center of the Milky Way) based on
the orbits of nearby stars, its thorough treatment of systematic
errors, and (thanks in part to the breadth of its errors) its
consistency with a large variety of other R, measurements
(both direct and indirect) in the literature, which range as low
as <8kpc or as high as 28.5kpc. It is likely, however, that
constraints on R, will tighten as geometric methods are
continually improving, while indirect methods that are plagued
by systematic errors become obsolete (Genzel et al. 2010). For
instance, the most recent measurement by Chatzopoulos et al.
(2015) finds Ry = 8.30 % 0.09|sa + 0.10]sys kpe by dynami-
cally modeling the nuclear star cluster dynamics. The
constraints from that analysis in the distance versus mass of
the black hole plane are in modest tension with those from
monitoring stellar orbits by Gillessen et al. (2009); a joint
analysis of the two ignoring this tension yields
Ry =836 + 0.11kpc. If we are to use this result for our
study, the uncertainty in both the disk mass and the total mass
are reduced to 0.5 X 10'° Mg, and our bulge mass error is

reduced to 0.06 x 10'°My, while the central values are
changed only slightly.

From the distribution of model-consistent realizations of M2
and M?, accounting for covariance between the two, we find
that the Milky Way has a bulge-to-total mass ratio of
B/ T = 0.1507)0:5. As seen in Figure 8, this result makes our
Galaxy typical among galaxies of similar morphological type in
the local universe. Finally, combining our results for M, and
M,, we find that the specific SFR of the Milky Way is
M, /M, =271 + 0.59 x 10~ yr™".

In a paper soon to follow, we will continue toward our goal
of producing a better global picture of the Milky Way. With the
improved constraints placed on M, and M, in this work, we
will next show that we can convert this information into
accurate predictions for the integrated photometric properties of
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the Milky Ways; i.e., the brightness and color of our Galaxy as
they would be observed by alien astronomers from across
cosmological distances. All of this work will culminate in a
newfound ability to accurately place the Milky Way in context
—i.e., we now have tight constraints on where our Galaxy falls
compared to observational trends we find for other galaxies.

We are grateful to Simon Mutch, Harry Ferguson, Sandra
Faber, Leo Blitz, Jo Bovy, Hongsheng Zhao, Renbin Yan,
Rachel Somerville, and Alister Graham for helpful discussions.
We thank Chad Schafer especially for a detailed reading and
comments, as well as assistance with clarifying the strict-prior
assumptions used in Section 4.2. We also thank the anonymous
referee for leading us to a number of improvements in this
work. T.C.L. and J.A.N. are supported by the National Science
Foundation (NSF) through grant NSF AST 08-06732.

APPENDIX
ALTERNATIVE MODELS OF THE GALACTIC DISK

If the exponential disk model used by Bovy & Rix (2013) is
far from reality, the total mass estimates in this paper will, of
course, be incorrect. The true global structure of the Galactic
disk remains an active area of research, and the direct
measurements available in the literature that probe the
(luminosity and mass) distribution of its stars have generally
been limited to the range of 3 < R < 9kpc (e.g., Juri¢ et al.
2008; Bovy & Rix 2013). Limiting the range of radii in this
way mitigates the problem of needing to distinguish bulge/bar
stars from disk stars where they overlap. These components
may be separated with kinematical information, but that is
available for few stars and is of course impossible for studies
based on aggregate light (e.g., Freudenreich 1998; Drimmel &
Spergel 2001). Similarly, studies that investigate the inner
stellar mass at R < 3 kpc, such as all of those in our Table 4,
must account for the bulge+bar and disk components either by
fitting for them simultaneously or subtracting off the contribu-
tion from stars in the inner disk based on the model that is
assumed. We remind the reader that, as described in Section 4.3,
we have attempted to renormalize all of the bulge+bar mass
measurements in Table 4 to reflect uniform assumptions about
the disk. Ultimately, all of this data is consistent with an
exponential mass density profile, such as the one we have used
for this study; in general, structural decompositions and model
magnitude measurements for external galaxies also assume
such a profile for disks.

In order to assess the impact that a non-exponential mass
profile would have on the inferred total disk mass, we
investigate the impact of allowing the mass profile to be
described by a Sérsic model (Sérsic 1968) in the radial
direction, rather than a pure exponential, which in the radial
(but not azimuthal) direction is equivalent to a Sérsic profile
with an index of n = 1. Sérsic indices from global fits to the
light from star-forming galaxies in the Sloan Digital Sky
Survey cluster around a value just above 1, with a tail to larger
values whose strength increases to redder colors (Blanton et al.
2003). This is consistent with a picture where disks are indeed
exponential and larger Sérsic indices are obtained in earlier-
type spirals with greater bulge contributions (a de Vaucouleurs-
profile bulge would have a Sérsic index of n = 4).

To investigate this further, we have employed the NYU
Valued-Added Galaxy Catalog (Blanton et al. 2005), which
includes Sérsic radial profile fits to the r-band 2D images of a

18

LicQuia & NEWMAN

sample of galaxies from the Seventh Data Release (DR7;
Abazajian et al. 2009) from the Sloan Digital Sky Survey
(York et al. 2000). These fits provide the Sérsic index (n),
scale radius (rp), and the covariance matrix between n and ry.
From Data Release 8 (DR8; Aihara et al. 2011) we have also
obtained the spectroscopically measured redshift (z), the
fraction of light from a de Vaucouleurs (bulge-like) profile
when combined with a pure exponential (n = 1) profile that
best fits the 2D image (fracDeV), the axis ratio (b/a) from the
best-fit exponential profile to the 2D image, and the g — r color
from mode 1 magnitudes that are extinction- and K-corrected to
z = 0 (which we denote °(g — r); Blanton & Roweis 2007).
We restrict to only those galaxies found in both the NYU-
VAGC and DR7/8 data sets that are also part of the cleanly
measured volume-limited sample described in (T. C. Licquia
et al. 2015, in preparation). Overall, this ensures that all
galaxies lie in the range 0.03 < z < 0.09 and have cleanly
measured images. From this sample we then reduce to only
those that meet the following criteria: (g — r) < 0.5,
o(n) < 0.25, 6(ry) < 0.25, fracbeV < 0.1, and b/a > 0.7.
This yields a set of 5,533 star-forming galaxies with minimal
bulge-like components that appear ~face-on and that have
well-measured radial Sérsic profile fits. We expect that the
Sérsic indices for this sample can be used to broadly constrain
the plausible values for the Galactic disk.

We find the median of this distribution to be 1.08 and the 1o
range to be [0.9, 1.3]. Given that this sample still includes
objects with a nonzero bulge mass (even a small de
Vaucouleurs bulge would increase the combined Sérsic index ),
values of n near but larger than 1 can be easily explained by
bulge contributions to the light. Apparent values of n below
1 are predicted to be observed for intrinsically pure exponential
disks due to projection effects and dust absorption (see Pastrav
et al. 2013a, 2013b, and references therein). Furthermore, one
expects substantial scatter when fitting Sérsic models to objects
with visible substructure (e.g., spiral arms). As a result, the
Sérsic index distributions of disk-dominated galaxies in SDSS
appear to be highly consistent with a scenario where the
effective Sérsic index for disks, if measured with no bulge
contribution, would in fact be n = 1 (i.e., exponential). We
therefore do not find any compelling evidence that would cause
us to discard the assumption that the Milky Way disk is
exponential so that a more complicated model is needed.

Although we have not found any compelling evidence that
the exponential disk assumption should be discarded, in order
to assess what the impact of non-exponential profiles could be
on our results, we have explored the effect that varying the
Sérsic index has on the distribution of stellar mass in the Milky
Way compared to a pure exponential (n = 1) profile, while
keeping fixed the mean values of the disk parameters listed in
Table 3. For fixed disk parameters, decreasing values of n
increasingly add more stellar mass toward the center of the
Galaxy, while increasing values of n remove it. For instance,
decreasing from n = 1 to 0.9 effectively ~doubles X, at the
Galactic center as well as the total disk mass at R < 3kpc
(from 1.97 x 10'° Mg to 3.74 x 10'° Mg,), which would imply
that the disk is the dominant component over the bulge at all
radii. The possibility that the disk may be described by a radial
Sérsic index that is non-negligibly below 1 can therefore be
discarded, as such models would be in strong tension with
direct measurements of the Galactic rotation curve at these
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inner radii, as well as the mass measurements of the bulge we
use in this study.

In contrast, we find that the mass of the disk between
R = 3 kpc (roughly where the bulge truncates) and R = 25 kpc
(well beyond the likely truncation radius of a Sérsic-model
disk) is rather stable for n > 1; increasing n anywhere from 1
up to 1.5 yields changes that are always <5 x 10° Mg, which is
modest compared to the overall uncertainties in the disk mass
estimate we present in Section 4.5. For changes at R < 3 kpc,
disk mass and bulge/bar mass are traded off against each other
(due to our definition of the central mass), so total masses are
minimally affected. Of course, given that we have renormalized
all of the bulge+bar mass measurements in Table 4 to reflect an
exponential (n = 1) disk, it would not be consistent to combine
our HB bulge+bar mass result with a generalized Sérsic model
of the disk. Hence, the effects we have explored here only
constitute a first-order correction; doing better would require
determining how a wide variety of historical bulge mass
measurements would change if a very different disk model
were used in fitting, which goes far beyond the scope or
purpose of this paper. We note that, since our definition of the
bulge/bar mass is the additional mass in excess of an
extrapolated exponential disk, even if the disk equivalent n
were in fact less than 1, we would have included that mass in
our bulge component, so our total mass would be minimally
affected (with only the fraction of that mass assigned to the
bulge and disk changing).

We note that the ultimate goal of this study is to produce
measurements of the mass of the Milky Way that may be
directly compared to those for other galaxies, particularly the
mass determinations from the MPA-JHU SDSS catalog. The
photometry in that catalog is based on model fits to galaxies
that assume de Vaucouleurs bulges and pure exponential disks;
if a very different model were used for determining the Milky
Way mass, it is unlikely the results would be directly
comparable. We also note that studies of the Galactic disk
find that its vertical structure is well described by an
exponential distribution with roughly constant scale height
(e.g., Juri¢ et al. 2008; Bovy & Rix 2013), inconsistent with a
Sérsic model. Given all this, we consider an exponential mass
profile, rather than a generalized Sérsic profile, the best option
for modeling the Galactic disk. Should this assumption prove
incorrect in the future (e.g., based on additional tests that will
be provided by Gaia (Gilmore et al. 2012) or APOGEE-2
(Sobeck et al. 2014) measurements), we have nonetheless
found that changing the disk model within reasonable bounds
should have negligible impact on our total stellar mass
estimates.
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