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Abstract. I review the progress in research on Intracluster Planetary Nebulae (IPN).
Hundreds of IPN candidates have now been found in the Virgo and Fornax galaxy
clusters, and searches of two nearby galaxy groups have made. From the results thus
far, approximately 10-20% of all stars in Virgo and Fornax are in an intracluster com-
ponent, but there are few such stars in galaxy groups. From the spatial distribution
of IPN, it appears that the intracluster stars are clustered, in agreement with tidal-
stripping scenarios. In Virgo, the IPN have a large line-of-sight depth, which implies
that the bulk of intracluster stars in this cluster derive from late-type galaxies and
dwarfs. I also discuss other important developments in IPN research such as the detec-
tion of intracluster H II regions, a possible detection of IPN in the Coma Cluster, and
future observational and theoretical developments.

1 Introduction

Why do planetary nebulae (PN), which are a late phase of stellar evolution,
make excellent tracers of intracluster stars, stars between the galaxies inside of
a galaxy cluster? An example of the utility of PN under similar circumstances
can be seen in Figure 1. On the left is a standard broad-band image of the
famous interacting galaxy pair M 51. Although there are numerous signs of the
interaction at high surface brightnesses, there are many lower surface-brightness
features [5] that are barely visible in this representation.

However, the distribution of PN found in M51 [20] displayed on the right
give additional information on this interacting system. There is a clear tidal tail
structure to the west of the secondary galaxy, and there are also signs of an
extension of the spiral arm to the south. The lack of PN in the central regions of
the galaxies are due to crowding effects. What this illustration reminds us is that
planetary nebulae trace stellar luminosity, not stellar surface brightness. Because
PN are an end-phase of stellar evolution for most stars between 1-8 solar masses,
the distribution of planetary nebulae closely follows the distribution of stars in
galaxies [9]. If there is enough luminosity in a stellar population for sufficient
numbers of PN to be present, then we can detect and study that population,
regardless of its surface brightness. Intracluster stars, which are believed to be
quite luminous (anywhere between 10% and 70% of the cluster’s total stellar
luminosity; [51,41]), but have a very low surface brightness (less than 1% of
the night sky in the optical bands; [30,22]) are therefore an ideal target for PN
searches.
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Fig. 1. Two images of the interacting galaxy pair M51. On the left is a broad-band
image taken with the KPNO 4-m telescope showing the classical high-surface bright-
ness features of this interacting system. On the right shows the location of the 64
planetary nebula candidates found by [20]. Note the clear tidal tail structures that are
extremely difficult to detect in the broad-band image, but can be seen easily in the PN
distribution.

PN have additional features that make them useful probes of intracluster
starlight. Because PN are emission-line objects, any bright PN that can be de-
tected photometrically can also be observed spectroscopically to high precision
(0 =~ 12 km s7!). In the case of M 51, spectroscopic follow-up of the PN [18]
found that the western tidal tail consists of two discrete structures that over-
lap in projection, one from each galaxy. With the high velocity precision of the
PN observations, the separation of the two kinematic structures was trivial. Al-
though I will not focus on the dynamical aspects of IPN/PN in this review (see
reviews by Arnaboldi, Douglas, Gerhard, & Peng this conference), it is impor-
tant to state that IPN are the easiest (and perhaps, the only) way to obtain
dynamical information about the intracluster light.

Finally, through the [O III] A 5007 Planetary Nebulae Luminosity Function
(PNLF), extragalactic PN make excellent distance indicators (see Ciardullo, this
conference). The distinctive PNLF can be used in the intracluster environment
to gain information on the line-of-sight distribution of the intracluster stars.

Why study intracluster stars in the first place? Once a curiosity proposed
by Zwicky ([62]), intracluster light is potentially of great interest to studies of
galaxy and galaxy cluster evolution. The dynamical evolution of cluster galaxies
is complex, and involves the poorly understood processes of cluster accretion
and tidal stripping [14]. The intracluster light provides a unique way to study
these mechanisms. Modern numerical simulations show that the intracluster light
[15,44,55,59,39] has a complex structure, and can be used to gain information
on the dynamical evolution of galaxies and galaxy clusters.
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2 History of Intracluster Planetary Nebulae Research

The history of IPN research begins over a decade ago with the first PN survey of
the Virgo cluster [32] (hereafter JCF). In this survey of elliptical galaxies, JCF
found 11 PN that were much brighter than the expected [O III] A 5007 PNLF
cut-off magnitude. JCF attempted to explain these “overluminous” PN with a
number of hypotheses, but none was entirely satisfactory.

The next step involved spectroscopic follow-up of objects from the JCF sur-
vey. During a radial velocity survey of PN in the Virgo elliptical galaxy M 86,
[1] found that 16 of the 19 detected PN velocities were consistent with the
galaxy’s mean velocity (Vyqgiar = -227 km s~1). The other three planetaries had
mean radial velocities of ~ 1600 km s~', more consistent with the Virgo clus-
ter’s mean velocity. [1] argued convincingly that these objects were intracluster
planetary nebulae, and it is here that the term first enters the literature. The
“overluminous” PN candidates were thus naturally explained as a population of
intracluster stars in front of the target galaxies. Almost simultaneously, the first
search for IPN candidates in the Fornax cluster was published [57], and more
detections of IPN candidates in Virgo quickly followed [36,10,21].

However, a surprise was in the works. Spectroscopic follow-up of the IPN
candidates revealed that some were not IPN, but instead background emission-
line objects with extremely high equivalent width [27,34]. This was unexpected,
because previous deep emission-line surveys had found very few such objects
[48], though many have now been detected at fainter magnitudes [50]. The most
likely source of the contamination was found to be Lyman-a galaxies at redshifts
3.12-3.14, where the Lyman-a A 1215 line has been redshifted into the [O III] A
5007 filters used in IPN searches. However other types of contaminating objects
may also exist [56,46].

Although these contaminants caused some consternation at first, a number of
lines of evidence quickly showed that the majority of IPN candidates are in fact,
actual IPN. Observations of blank control fields with identical search procedures
as the IPN surveys [11,7] have found that the contamination fraction is signifi-
cant, but was less than the observed IPN surface density. The surface densities
found correspond to a contamination rate of ~ 20% in the Virgo cluster and =~
50% in Fornax (Fornax is more distant than Virgo, so its PNLF is fainter, and
therefore further down the contaminating sources luminosity function). There are
still significant uncertainties in the background density due to large-scale struc-
ture, and to the small numbers of contaminating objects found thus far. How-
ever, deeper and broader control fields are forthcoming. Spectroscopic follow-up
of IPN candidates [27,11,3], and Arnaboldi et al., this conference, clearly show
large numbers of IPN candidates have the expected [O III] A 5007 and 4959
emission lines, with a contamination rate similar to the blank field surveys. Fi-
nally, there is independent evidence of individual intracluster stars in Virgo from
observations of individual Intracluster Red Giant stars (IRGs; [26,17]) from the
Hubble Space Telescope.

It is worth reiterating that all deep [O III] A 5007 emission-line searches
will have such contamination at fainter magnitudes. In fact, such objects have
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already been seen in conventional PN surveys ([37,18] and Romanowsky, private
communication). Extragalactic PN researchers should keep this into account.
The brightest of such objects have been detected with a msgo7 magnitude of
25.5 [27], though the luminosity function of the contaminants is still poorly
known.

Currently, with the widespread use of mosaic CCD detectors, and automated
detection methods derived from DAOPHOT and SExtractor, over a hundred IPN
candidates can be found in a single telescope run [47,23,3,25]. IPN candidates
are easily identified as stellar sources that appear in a deep [O III] A 5007 image,
but completely disappear in an image through a filter that does not contain the
[O III] line. Currently, over 400 IPN candidates have been detected in the Virgo
cluster, and over 100 IPN candidates have been found in the Fornax cluster.
Figure 2 summarizes the status of the different surveys. Despite all of the effort,
to date, only a few percent of the total angular area of Virgo and Fornax have
been surveyed. Literally thousands of IPN wait to be discovered by 4-meter class
telescopes.

3 The Spatial Distribution of the Intracluster Light

If we want to understand the mechanisms that produce intracluster stars, it is
useful to compare the intracluster stars’ spatial distribution with that of the
better-studied components of galaxy clusters: the cluster galaxies, the hot in-
tracluster gas, and the invisible dark matter. Theoretical work predicts very
different spatial distributions for the intracluster light depending on its produc-
tion time. For example, if most intracluster stars are removed early in a cluster’s
lifetime [38], the distribution of this diffuse component will be smooth and follow
the cluster potential. However, if a significant portion of the stars are removed
at late epochs via galaxy encounters and tidal stripping [51,42], then the intra-
cluster light should be clumpy and have a non-relaxed appearance. In particular,
the “harassment” models of [42,43] first predicted that many intracluster stars
will exist in long (~ 2 Mpc) tidal tails, which may maintain their structure for
Gyrs.

With regards to angular clustering, there is good evidence that the IPN follow
a non-random distribution. [47,25] show evidence for clumps of IPN within their
survey fields, and Aguerri et al. (2004) found a strong clustering signal using
a standard two-point correlation function analysis (reported in [45]). The scale
of the angular clustering ranges from one to ten arcminutes, (corresponding 5
to 50 kpc assuming a mean Virgo distance of 15 Mpc), depending on the field
studied. However, no tail-like features have yet been seen in the IPN distribution,
although tidal arc features have been seen in broad-band images of other galaxy
clusters [58,31,6].

With the use of the [O III] A 5007 PNLF, we can also obtain line-of-sight
information on the intracluster stars, a property unique to IPN. Although a full
analysis of the observed luminosity functions has not yet been attempted, we
can already learn something useful from the brightest IPN candidates in each
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Fig. 2. Images of the Virgo cluster (left), and the Fornax cluster (right), with the
various published IPN survey fields marked, as well as the two HST IRG fields. Soon
to come are additional fields from Aguerri et al. (2004; Virgo), Ciardullo et al. (2004;
Fornax), Feldmeier et al. (2005; Virgo) and Ciardullo et al. (2005; IRG Virgo)

+

field. Given the empirical PNLF, there is a maximum absolute magnitude M™*,
that a PN may have in the light of [O III]. If we assume that the brightest
observed IPN candidate in each field has this absolute magnitude, we can derive
an upper limit on its distance, and therefore estimate the distance to the front
edge of the Virgo intracluster population. This is plotted in Figure 3. As can be
clearly seen, there is an offset between the IPN of subclusters A and B : this is
interpreted as due to the differing distances of these two subclusters. However,
the most revealing feature of the distribution of the IPN is in subclump A. The
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upper limit distance for most of the fields is well in front of the cluster core.
This is partially due to a selection eflect: it is easier to detect an IPN on the
near side of Virgo than the far side. Nevertheless, the depth implied from the
measurements is remarkable. If we take the data at face value, then the TPN
distribution has a line-of-sight radius of over 4 Mpc. If we compare this radius
to the classical radius of Virgo on the sky (six degrees, or 1.6 Mpc), we find that
the Virgo cluster is more than 2.6 times as deep as it is wide. Virgo is nowhere
near a spherical cluster: it contains considerable substructure, and is elongated
significantly along our line of sight.

The great depth derived for the IPN distribution gives an important clue to
the parent galaxies of the intracluster stars. Numerical simulations [43,16] show
that the majority of intracluster stars are ejected into orbits similar to that
of their parent galaxies. In Virgo, the cluster ellipticals are clustered within a
radius of &~ 2 Mpc from the cluster core [32]. In contrast, the hydrogen deficient
spirals found in the Virgo cluster have a radius of 4 Mpc or larger [54], and the
dwarf ellipticals have a depth of 6 Mpc [33]. Therefore, it seems clear that a
significant portion of Virgo’s intracluster stars originate from late-type galaxies
whose highly radial orbits take them in and out of the cluster core.

4 Converting IPN densities to Luminosity Densities

In principle, determining the amount of intracluster luminosity from the ob-
served numbers of IPN is straightforward. Theories of simple stellar populations
[49] have shown that the bolometric luminosity-specific stellar evolutionary flux
of non-star-forming stellar populations should be ~ 2 x 107! stars—yr‘l—Lél,
(nearly) independent of population age or initial mass function. If the lifetime
of the planetary nebula stage is ~ 25,000 yr, and if the empirical PNLF is
valid to ~ 8 mag below the PNLF cutoff, then every stellar system should have
a ~ 50 x 1078 PN-L(T)I. According to the empirical PNLF, approximately one
out of ten of these PNe will be within 2.5 mag of M*. Thus, under the above
assumptions, most stellar populations should have ass ~ 50 x 107° PN—Lél.
The observed number of IPN, coupled with the PNLF, can therefore be used to
deduce the total luminosity of the underlying stellar population.

In practice, there are a number of systematic effects that must be accounted
for before we can transform the numbers of IPN to a stellar luminosity [25],
which we briefly summarize here.

First, although stellar evolution theory originally predicted a constant as 5
value for all non star-forming populations, observations present a more com-
plicated picture. [8] found that in a sample of 23 elliptical galaxies, lenticular
galaxies, and spiral bulges, the observed value of a5 never exceeded as s =
50 x 107° PN-L(S1 but was often significantly less, with higher luminosity galax-
ies having systematically smaller values of as 5. Since the amount of intracluster
starlight derived is inversely proportional to the as 5 parameter, a large error in
the amount of intracluster light can result if this is not accounted for.
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Fig. 3. A comparison of the upper limit distances obtained from the intracluster plan-
etary nebulae to direct distances to Virgo Cluster galaxies. At the top are the upper
limit distances (denoted by the open squares) from IPN observations by Okamura et
al. (2002) and Arnaboldi et al. (2002). Below that are the distances derived from as
the overluminous IPN found in front of M87 (Ciardullo et al. 1998). These upper limit
distances are compared to the PNLF distances of Virgo ellipticals (denoted by the open
circles; Jacoby, Ciardullo, & Ford 1990; Ciardullo et al. 1998), and Cepheid distances
to spiral galaxies (denoted by the filled circles; Pierce et al. 1994; Saha et al. 1997;
Freedman et al. 2001). The subcluster of Virgo that each intracluster field resides in is
noted. Note the great depth of IPN, compared to that of the elliptical galaxies.

By comparing the numbers of IPN in a field surrounding a HST WFPC?2 field,
with RGB and AGB star counts, [17] found a value of s 5 = 23ﬂg x 10~9 PN-
Lél for Virgo’s intracluster population. This observational measurement is bol-
stered by the new theoretical work of Buzzoni & Arnaboldi (this conference),
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which show that the observational value for as 5 is well within the range for
models of moderate luminosity galaxies.

Second, as we have discussed previously, IPN surveys are not pristine: approx-
imately 20% of Virgo IPN candidates, and 50% of Fornax IPN candidates, are
likely to be unrelated background sources. Although these objects are subtracted
out statistically from all modern IPN surveys, the importance of field-to-field
variations in the background due to large-scale structure is still unknown.

Finally, the IPN candidates of Virgo have a significant line-of-sight depth.
Since the conversion between number of PN and luminosity depends on the shape
of the luminosity function, this depth can change the amount of intracluster light
found from the data. Models [21] indicate that the difference between a single-
distance model (the most conservative) and assuming that the IPN are uniformly
distributed in a sphere of radius 3 Mpc (the least conservative), changes the
derived intracluster star luminosity by up to a factor of three. Thus far, all IPN
researchers have adopted a single distance model in order to be conservative,
but this effect is the least studied at this point.

After applying all of these corrections, the intracluster stellar fractions for
Virgo vary between 10 and 20% [2,47,3,25], with the errors being dominated by
the systematic effects. The IRG measurements [26,17] find somewhat less intra-
cluster light (10-15%), but the various results agree within the errors. However,
it is important to note that each of these studies makes different assumptions
concerning the calculation of intracluster luminosity, the amount of light bound
to galaxies, and the contamination of background sources. For Fornax, there are
only two measurements of the intracluster star fraction thus far from IPN. [57]
report a fraction of up to 40%, but this is before the detection of contaminating
sources, and is likely to be an overestimate. Ciardullo (2004, in prep), reports an
approximate fraction of 20%, with similar errors as the Virgo results. Regardless
of the uncertainties, it is clear that a significant fraction of all stars in Virgo and
Fornax are in an intracluster component.

How does the IPN luminosity density compare with well-known cluster prop-
erties such as radius, or projected galaxy density? [25] has compared these
properties in Virgo, and has found little or no correlation. This may be due
to Virgo’s status as a dynamically young cluster, or due to a selection effect
(IPN researchers must observe where the galaxies are not, to avoid confusion
with normal extragalactic PN). More data will be needed to confirm this result.

5 Intracluster H 1T Regions

A recent discovery stemming from IPN searches is the detection of H II regions
in the far halos of galaxies or in intracluster space. In the course of spectroscopic
follow-up of a Virgo IPN field, [29] found an emission-line source that has the
properties of a ~ 400 solar mass, 3 Myr compact H II region, over 17 kpc
away from the nearest Virgo galaxy (see also [35] for a similar, earlier, under-
appreciated example). There are now a number of other examples of intergalactic
star formation in Virgo and in other galaxy clusters and groups [60,53,52,13,19].



Intracluster PN 9

These discoveries have two important implications. First, star formation can
occur at large distances from galaxies, and environments quite different than that
normally studied. This has implications for a number of fields of astrophysics,
including the origin of metallicity in the intergalactic and intracluster medium,
and the possible in situ origin of B stars in the Galactic halo. At this time, it
does appear that intracluster star formation is only a small fraction of the total
intracluster star production, but the exact amount is uncertain. Second, these
objects are another form of contamination to pure IPN surveys. Discouragingly,
the only way to separate these objects from IPN is through deep spectroscopy.
Luminous PN have [O IIT] / He ratios of two or greater [12], where luminous H 1T
regions do not. From the surveys thus far, these objects appear to be relatively
rare component of IPN surveys (~ 3%), but more study is needed in this area.

6 Intra-group Starlight

Although the presence of intracluster starlight in clusters such as Virgo and
Fornax is now well established, the amount of ’intra-group’ starlight is still un-
certain. Theoretical studies predict that if most intracluster stars are removed by
galaxy collisions [51,42], the fraction of intra-group stars, to first order, should
be a smooth function of galaxy number density (Ljcr, ~ N%,;). To test this hy-
pothesis, two different groups have surveyed the nearby M 81 and Leo groups of
galaxies [7,19], using similar detection methods as the cluster searches. In both
cases, no genuine intra-group PN were found. These non-detections strongly im-
plies there is substantially less (4-15 times) less intergalactic stars in groups
than there are in clusters.

When compared with other measurements of intracluster star fractions through
modern deep imaging [4,30,22,24], or through the detection of intracluster su-
pernovae [28], an interesting pattern emerges, plotted in Figure 4. For galaxy
clusters, the data is consistent with an approximate fraction of 20%, albeit with
large error bars or intrinsic scatter. When we move to the group environment,
the fraction abruptly drops, with no sign of any smooth decline. This implies
that there is something special about the cluster environment that promotes in-
tracluster star production. More data will be needed to confirm and strengthen

this result, especially IPN searches of additional galaxy groups.

7 IPN in the Coma Cluster?

At this conference, Gerhard et al. announced the possible detection of at least
one IPN candidate in the Coma Cluster. If this candidate is confirmed, it will
be the most distant individual PN ever detected, at a distance of over 100 Mpc.
This object was found using a technique of filling the entire focal plane of the
8-m Subaru telescope with a slit mask through the appropriate [O IIT] A 5007
filter, and looking for narrow-line emission sources. Deep broad-band imaging has
implied that the Coma Cluster may have a very high intracluster star fraction, up
to 50% [4], so it is plausible that a few IPN could be detected, despite the small
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Fig.4. A comparison of detected intracluster star fractions from modern measure-
ments, as a function of the velocity dispersion. Note the abrupt change from the cluster
environment to the group environment.

area surveyed. The most exciting aspect of this observation is that it opens up a
way to observe PN at much greater distances than previously thought possible,
and makes it possible to place IPN density limits in more distant galaxy clusters.

8 The Future

Studies of IPN are not even a decade old, and much more work still needs to
be done. The most crucial observations needed in the near term are spectro-
scopic follow-up of a large number of IPN candidates. This would allow us to
better determine the contamination rate from background galaxies, avoid any
other intracluster H II regions, and most importantly, gain information on the
kinematics of intracluster stars. More IPN imaging is needed in Virgo and For-
nax at differing radii and densities, in order to confirm the lack of correlations
found thus far. IPN surveys of additional galaxy groups are needed to determine
the lack of intra-group stars in these systems, and to better characterize the
steepness of the intracluster production “cliff.”

However, the future of IPN research will involve close comparisons of IPN
properties to other observations of extragalactic PN and galaxy clusters and
close comparison to the modern numerical simulations now being undertaken.
Some examples are given below, but it is almost certain that many more will be
added in the next few years.

Villaver (this conference), presented the first numerical hydrodynamical sim-
ulations of IPN within a hot intracluster gaseous medium. The results imply
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that IPN do survive in the intracluster medium, but the nebula may be spatially
distorted.

[40] has just completed the first phase of a deep CCD imaging survey of
the Virgo cluster core using the techniques of ultra-deep surface photometry.
These new observations reach extremely faint surface brightnesses (uy = 29.6)
over large angular areas (= 2 square degrees). Comparing these deep imaging
maps with the IPN observations should be revealing, and allow us to better
determine the reality of tidal features in both data sets, and to give clear targets
for follow-up IPN observations.

HST+ACS broad-band observations are planned of an intracluster field in
Virgo by Summer 2005, with the goal of obtaining the first color-magnitude
diagram of the intracluster stars. By placing tighter constraints on the age and
luminosity of the intracluster population, we should be able to better constrain
the as 5 parameter, and improve the accuracy of the total amount of intracluster
starlight.

Finally, with the advent of advanced numerical simulations of galaxy clusters,
we will be able to compare the IPN data to models of intracluster star production.
Due to the large angular size of nearby clusters, it will be many years before
the majority of the clusters will be surveyed for IPN. Numerical simulations
will hopefully allow us to survey more efficiently, and to obtain better quality
information on the properties of intracluster starlight.

I would like to thank the conference organizers for allowing me to give this
review, and for running an excellent conference. I would also like to thank my
collaborators for their years of effort on the science presented here. This work was
supported in part by NSF grant AST 03-02030 and NASA grant NAG 5-9377.
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