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ABSTRACT

Four determinations of the density distribution D(Z) with height from the plane at the solar circle for
dwarfs with absolute magnitudes of (M ) ~ + 4 to + 5 are combined. The four determinations are in
good agreement. The data extend to Z = 10 kpc. The gradient, d log D(Z)/dZ, changes continuously
over the observed range of Z; the gradient flattens with increasing Z. Calculated density distributions
for discrete kinematic samples with o( W) values of 17, 42, and 90 km s~ provide a unique fit to the
data, giving density normalizations at Z = 0 of 1:0.11:0.005 (or 200:22:1). We identify the (W) =

km s~! component with the old thin disk (scale height ~270 pc), the o( W) = 42 km s~' component
with the thick disk (scale height ~940 pc), and the o(W) = 90 km s~! component with the extreme
halo (scale height at ~3.2 kpc). The derived density normalizations agree with the independent data
from the unbiased radial-velocity sample (Sandage and Fouts 1987) but are larger by a factor of ~5
from the Gilmore-Reid normalization. The mass of the stellar component in the halo is estimated to be
~3X10° M, comprising less than ~2% of the total Galactic mass. From two normalizations the
local density of halo stars is between 1X10° M kpc— and 2.5X 10° M, kpc™?, agreeing well with

previous values by Schmidt and by Eggen from widely different methods

I. INTRODUCTION

The local density ratio of the galactic thick disk and halo
components to the old thin disk obtained in the unbiased
radial-velocity sample reported in the previous paper (San-
dage and Fouts 1987b) is so high (90:10:0.5) that a deter-
mination by independent means is necessary. The problem is
considered in this paper by analyzing the star-count data in
the galactic poles, from which the density distribution of
stars perpendicular to the galactic plane can be determined
to 10 kpc.

The density distribution of each of the galactic compo-
nents is related directly to the velocity dispersion o (W) of
that component if we are dealing with what can be approxi-
mated by a discrete Lindblad (1959) kinematic subsystem
with a discrete value of o( W). To be sure, the Galaxy is a
continuum structure formed by a process which had a var-
iety of rates (star-formation rates, collapse rates, gas-dissi-
pation rates, etc.), yet it is convenient to approximate this
continuum by division into the various segments of the pro-
cess, separated by particular values of the ratios of the rel-
evant rates. It is, of course, generally understood by astron-
omers who discuss disks (old, young, thick, or thin), bulges,
halos, etc., as separate structures that they are approximat-
ing this continuum by a series of discrete boxes according to
these ratios. This is, in fact, at the heart of the description of
the population concept.

The three components whose density normalization we
are seeking will be assigned discrete and separate o( W) val-
ues, based on the results reported earlier in this series (San-
dage and Fouts 1987a,b). Each separate o( ) leads to a
particular run of density D(Z) with height. The sum of the
separate densities gives the observed total density distribu-
tion D(Z) for the total sample considered.

We seek here to turn the problem around: From the ob-
served D(Z) for the total sample, we wish to find the sepa-
rate D,(Z), D,(Z), and D,(Z) density distributions for the
old thin disk, the old thick disk, and the halo, from which the
density normalizations in the plane D,(0), D,(0), and
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D;(0) are sought. The data to be used are the observed
summed density D, (Z) = D,(Z) + D,(Z) + D,(z), and
the three velocity dispersions o, ( W), o,(W), o5(W).

In the next section we compute a family of D(Z) curves
for particular o(W) values, using an assumed run of the
gravitational acceleration g(Z) perpendicular to the plane.
In Sec. III the polar star-count data from the Basel, the Edin-
burgh, and the Tokyo surveys are analyzed and compared
with the analysis of Fenkart (1966) in Selected Area 57 to
obtain an adopted D(Z) density run to heights of 10 kpc
from the galactic plane. This total density is decomposed
into the three density components of thin disk, thick disk,
and halo in Sec. IV using the predicted individual functions
from Sec. II. In this way we obtain the density normalization
at Z = 0to be 1:0.11:0.005, or 200:22:1. These values agree
with those obtained from the unbiased radial-velocity sam-
ple discussed in the preceding paper.

Finally, with the density normalization and the density
falloff of the halo now known, we compute in Sec. V the mass
of the halo for the stars alone.

II. CALCULATED DENSITY DISTRIBUTIONS FOR THREE
ASSUMED VELOCITY DISPERSIONS o(#)

It is well known (Kapteyn 1922; see Lindblad 1959 for a
concise derivation) that the density distribution perpendicu-
lar to the plane which a group of stars assumes, if their veloc-
ity distribution is Gaussian with dispersion o( W), is

Z
D(z) =D(0)CXP[—0(W)‘ZJ g(Z)dZ], (n
0

where g(Z) is the gravitational acceleration perpendicular
to the plane.

Table I lists the calculation of this function from the galac-
tic plane to Z = 10 kpc. The adopted g(Z) is from Saio and
Yoshii (1979, Fig. 1) based on combining the determination
of Oort (1965) and Oort and van Woerkom (1941). Col-
umns 4-6 are the resulting predicted density distributions
for the old thin disk with o (W) = 17 km s, the thick disk
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TABLE 1. Adopted acceleration perpendicular to the plane at the solar circle and calculated density distribution with height.

VA

z g(2) fog<z>dz log D(2)/D(0)

kpc 109 cm s-2 cm2 s—2 0=17 km s_1 0=42 km s_1 0=90 km s-1
(1) (2) (3) (4) (5) (6)
0.0 0.0 0 11 0 0 0
0.1 1.8 5.58 x 1012 -0.08 -0.01 0
0.2 3.4 l1.61 x 1012 -0.24 -0.04 -0.01
0.3 5.3 3.26 x 1012 -0.49 -0.08 -0.02
0.4 6.2 5.18 x 1012 -0.78 -0.13 -0.03
0.5 7.1 7.38 x 1012 -1.11 -0.18 -0.04
0.6 7.3 9.64 x 1013 -1.45 -0.24 -0.05
0.7 7.7 1.20 x 1013 -1.80 -0.30 -0.06
0.8 7.8 1.44 x 1013 -2.16 -0.36 -0.08
0.9 7.9 1.69 x 1013 -2.54 -0.42 -0.09
1.0 8.0 1.94 x 1013 -2.92 -0.48 -0.10
1.2 8.2 2.44 x 1013 -3.67 -0.60 -0.13
1.4 8.4 2.96 x 1013 -4.45 -0.73 -0.16
1.6 8.6 3.49 x 1013 -5.24 -0.86 -0.19
1.8 8.8 4.03 x 1013 -6.06 -0.99 -0.22
2.0 8.9 4.58 x lO13 -1.13 -0.25
2.5 9.1 5.98 x 1013 -1.48 -0.32
3.0 9.3 7.42 x 1013 -1.83 -0.40
3.5 9.5 8.89 x 1014 -2.19 -0.48
4.0 9.6 1.04 x 1014 -2.57 -0.56
4.5 9.6 1.19 x 1014 -2.94 -0.64
5.0 9.4 1.33 x 1014 -3.27 -0.71
5.5 9.2 1.47 x 1014 -3.63 -0.79
6.0 9.0 1.62 x 1014 -3.98 -0.87
6.5 8.9 1.75 x lO14 -4.32 -0.94
7.0 8.6 1.89 x 1014 -4.66 -1.01
7.5 8.3 2.02 x 1014 -4.98 -1.08
8.0 8.0 2.14 x 1014 -5.28 -1.14
8.5 8.0 2.26 x 1014 -5.58 -1.21
9.0 8.0 2.39 x 1014 -5.90 -1.28
9.5 8.0 2.51 x 1014 -6.19 -1.35
10.0 8.0 2.64 x 10 -6.51 -1.42

using o (W) =42 km s~! from Paper VI of the subdwarf
series (Sandage and Fouts 1987b), and the halo using
o(W)=90kms™ .

Figure 1 shows the three predicted distributions. Very
near the plane the log D(Z) function decreases approxi-
mately as Z 2 (because g(Z) is linear in Z for the first few
hundred parsecs). At larger distances, D(Z) is closely expo-
nential. The resulting e~ scale height and the naperian log
density gradient are listed beside each of the calculated
curves in Fig. 1.

II1. THE DENSITY DISTRIBUTION D(Z) FOR STARS WITH
+4SM, = + 6 DERIVED FROM POLAR STAR COUNTS

Counts of the number of stars in given apparent magni-
tude and spectral class or color intervals per unit area on the

sky have been the traditional data from which to derive the
density distribution along any given line of sight. There are
two methods of solution. One is to solve the fundamental
integral equation of stellar statistics for D(r), given the ob-
served count data 4 (m, color) (which is the number of stars
per square degree at magnitude m in interval dm within a
given color interval ). The other method as used in the exten-
sive Basel galactic structure program is to determine the dis-
tance of each star in the program from its magnitude and
U — G and G — R colors and then bin the sample by dis-
tance. Each method requires information on the absolute
luminosity of individual stars, invariably obtained either
from the spectral or the color data. The two methods are, of
course, equivalent.

Three large surveys at bright magnitudes of the galactic
polar regions exist. The polar region of the Basel survey is
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distance sampled is the interval 7.9—10.0 kpc for a mean dis-
tance of (Z ) = 8.95 kpc. The data in Fenkart’s analysis are
from the Basel galactic program where three colors and
magnitudes of every star in given fields were measured. The
area of the SA 57 Basel catalog is 2.61 square degrees.

A two-color survey of 18.24 square degrees at the south
Galactic pole for stars brighter than ¥ = 19 was made by
Gilmore and Reid (1983). They summarize their extensive
count data in their Tables 1 and 2 as the number of stars per
18.24 square degrees in the absolute-magnitude interval
M, + 0.5 in the distance interval of log Z + 0.1. To obtain
densities, their listed numbers must be divided by the volume
contained within each distance interval. This volume ele-
ment is

612 ALLAN SANDAGE: GALACTIC POLES
CALCULATED DENSITIES
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FI1G. 1. Calculated densities from Eq. (1) using the acceleration
g(Z) listed in Table I. Three values of o( W) are adopted. The scale
heights and density gradients are marked for each curve.

Selected Area 57. Fenkart (1966) has derived D(Z) for var-
ious absolute magnitude and distance intervals, and for a
division based on the U — G, G — R colors of disk and halo
stars. A summary of Fenkart’s density determination is set
out in Table II, where his disk and halo sample has been
combined, and where we restrict his total sample to stars
between M of + 4to + 6. In TableII the distance interval
and mean distance are in columns 1 and 2. The log of the
densities (in units of stars per pc®) for stars between
M; =4-5, 5-6, and 4-6 are in columns 3-5. The largest

AVol = 1/3w(r — 1),

(2)

where 7, and 7, are the inner and outer boundaries of the
particular volume shell and w is the solid angle (in square
radians) of the 18.24 square degree field. For the Gilmore-
Reid sample, their volume elements within distance shells
bounded by distances », and r,, reduced to a unit square
degree area, are

AVol = 1.02X 107%(r — ) pc® deg ™2,

where 7, and 7, are in parsecs.

Using the volume elements calculated in this way gives the
derived densities, in units of stars per pc?, listed in Table III
for the absolute-magnitude intervals of M, between 4 and 5
and between 5 and 6. The Gilmore-Reid data extend to a
maximum distance of Z = 4.5 kpc.

A three-color survey of 21.46 square degrees of the north
galactic polar region has been made by Yoshii, Ishida, and
Stobie (1987), also to ¥ = 18. They list their binned data in
1 mag intervals from ¥ = 10 to ¥ = 18 and in intervals of

= 0.05 mag of B — V'and U — B color. From these listings,
an analysis can be made via the principal equation of stellar
statistics

(3)

A(m) =a)fw r’D(r)¢(M)dr, “4)
0

TaBLE II. Fenkart’s density distribution in SA 57 for stars with M between + 4 and + 6 (disk + halo).

Z <Z> log D(Z)MG VA <Z> log D(Z)MG

kpc kpc 4 to 5 5 to 6 4 to 6 kpc kpc 4 to 5 5to 6 4 to 6

(n (2) (3) (4) (5) (1) (2) (3 (4) 5
0 -0.5 0.25 -3.26 -2.92 -2.76 0-2.5 2.25 -5.50 -4.65 -4.59
0.5 - 0.6 0.5 -3.83 -3.81 -3.52 5-3.2 2.85 -5.37 -4.99 -4.84
0.6 - 0.8 0.7 -3.61 -3.31 -3.13 2 - 4.0 3.6 -5.93 -5.18 -5.11
0.8 - 1.0 0.9 -4.15 -3.60 -3.49 0~ 5.0 4.5 -5.94 -5.66 -5.48
1.0 - 1.3 1.15 -4.28 -3.79 -3.67 0-6.3 5.65 -5.87 -6.50 -5.78
1.3 - 1.6 1.45 -4.52 -4.20 -4.03 3-7.9 7.10 -6.13 -—— ———=
1.6 - 2.0 1.8 -4.76 =4 .44 -4.27 9 -10.0 8.95 -6.92 ---- ————

*Unit on the densities is number

of

3
stars per pc”.
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TABLE III. Gilmore and Reid densities derived from their star counts in 18.24 square degrees of the SGP (their Table 2 using the metallicity

correction).
log <Z> <Z> log D(Z)M log <Z> <Z> log D(Z)M
kpc 4 to 5 5vto 6 kpc 4 to 5 \5, to 6

(1 (2) (3 (4) (1) (2) (3) (4)
2.05 0.11 -2.79 -2.67 2.95 0.89 -3.75 -3.65
2.15 0.14 -2.67 -2.45 3.05 1.12 -3.98 -3.91
2.25 0.18 -2.57 -2.47 3.15 1.41 -4.25 -4.18
2.35 0.22 -2.81 ~-2.72 3.25 1.79 -4.46 ~-4.47
2.45 0.28 -2.80 -2.79 3.35 2.24 -4.74 -4.68
2.55 0.35 -3.04 -2.95 3.45 2.82 -4.95 -4.89
2.65 0.45 -3.19 -2.99 3.55 3.55 -5.20 ——
2.75 0.56 -3.28 -3.19 3.65 4.47 =-5.47 —-——
2.85 0.71 -3.49 -3.50

where 4(m) is the number of stars per unit area of solid
angle w at m in interval dm, ¢ (M) is the luminosity function
of absolute magnitudes, and m, M, and r are related by
m—M=5logr—>5.

By restricting the analysis to a narrow range of color, we
restrict the data to a narrow range of absolute magnitude,
and can thereby simplify the solution of Eq. (4) for D(r).
We have analyzed the Yoshii, Ishida, and Stobie data by
using only the counts between 0.3<B — ¥<0.6 and have as-
sumed that stars in this color range have an absolute magni-
tude near the globular cluster turnoff at M, = + 4. This
replaces the ¢ (M) distribution by a delta function. Further-
more, by choosing distance intervals separated by A
log » = 0.2 and apparent-magnitude intervals of + 0.5 mag
(i.e., I mag for the total interval), the integral of Eq. (4) can
be replaced by a single calculation, giving

D({(ry) =A(m)/AVol, (5)

where AVolis given by Eq. (2), {r) is (*, + r,)/2, and r and
m are related (assuming M, = +4) by logr=0.2m
+ 0.2. The method is standard and follows directly from
Kapteyn’s m, log 7 method of solving Eq. (4), as described
in Bok’s (1937) textbook, for example.

Preparatory to applying the method, we list the observed
A(m) values for the Yoshii, Ishida, and Stobie data in Table
IV. The units of 4(m) are the number of stars per square
degree between B — ¥ of 0.3 and 0.6 within the listed ¥ mag-
nitude interval.

We have analyzed the Basel data in the same way by work-
ing directly with the Basel catalog of SA 57 (Becker and
Fenkart 1976). The RGU data were transformed to the
UBYV system by Steinlin’s (1968) equations, anda V, B — V'
color-magnitude diagram was constructed. Counts were
made in this diagram to give the 4(m) values also listed in
Table IV.

Table V lists the derived D(Z) densities from both the
Basel and Tokyo data of Table IV. The midpoint of the dis-

tance intervals is in column 1, with its corresponding mean
distance in column 2. The volume element between the inner
and outer boundaries of the distance shell considered is in
column 3, calculated from Eq. (2) for 1 square degree. Col-
umns (4) and (5) give the log of the derived densities calcu-
lated from Eq. (5) using the 4 (m) values from Table IV and
the volume elements of column 3.

IV. THE COMPOSITE DENSITY DISTRIBUTION DECOMPOSED
INTO THREE COMPONENTS

a) Our Density Normalizations

The four density determinations for D(Z) agree remark-
ably well, as shown in the top panel of Fig. 2. Aside from a
slight normalization adjustment, the run of D(Z) with Z is
indistinguishable between the four determinations. In plot-

TABLE IV. Number of stars per square degree 4(m) between
B — V'=10.3 and 0.6 in the Basel Catalog of SA 57 and the catalog of
Yoshii, Ishida, and Stobie in the NGP.*®

2

v A(m) stars deg- v A(m)

0.3 < B-V < 0.6 0.3 < B-V < 0.6

Basel Tokyo Basel Tokyo
10.5 - 11.5 2.31 2.62 15.5 - 16.5 20.1 23.3
11.5 - 12.5 4.59 4.66 16.5 - 17.5 27.1 30.9

12.5 - 13.5 7.22 7.56 17.5 - 18.5 34.3 37.0

13.5 - 14.5 10.43 11.18 18.5 - 19.5 43.0

14.5 - 15.5 14.74 16.16

2 Basel counts based on complete sample in 2.61 square degrees.

b Tokyo counts based on complete sample in 21.46 square degrees.
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TABLE V. Derived densities for stars with B — ¥ between 0.3 and 0.6 in
the NPC from the Basel and the Tokyo counts.

FIOB7AT. . 2209307

log <2> <z> Avol log D(Z)

kpc pc3 deg-2 Basel Tokyo
(€3] (2) 3) (4) (5)
2.4 0.25 2.40 x 10° -3.02 -2.96
2.6 0.40 9.55 x 107 -3.32 -3.31
2.8 0.63 3.80 x 104 -3.72 -3.70
3.0 1.00 1.51 x 10° -4.16 -4.13
3.2 1.58 6.03 x 10° -4.61 -4.57
3.4 2.51 2.40 x 10° -5.08 -5.01
3.6 3.98 9.55 x 10° -5.55 -5.49
3.8 6.31 3.80 x 107 -6.04 -6.01
4.0 10.00 1.51 x 108 -6.55 —-

ting the points in Fig. 2(a) we have normalized all of the
data to the derived Basel densities (Table IV).

The Basel data extend to 10 kpc. This is more than twice as
far as the last Gilmore-Reid point at 4.5 kpc, and it is this
difference which is crucial in explaining our different density
normalization of ~ 10 to 1 for the thin to thick disk com-
pared to ~ 50 to 1 obtained by Gilmore and Reid.

The decomposition into the components is now simply

I I 1 T T T
(a)
sl & a FENKART (4 10 6) _
+ GILMORE - REID (4 105)
Y x TOKYO (0.3 10 0.6)
: e DERIVED BASEL (0.3 10 0.6)
-l ]
-5 - _
oL ]
C
T e e e e A A
Q
o (b)
Ja b THIN DISK -2.80 —
THICK DISK -3.75
; HALO -5.10
N . 3
a [ 1:0.1l: 0.005 _
! 200+ 22:1
1
s _
. ]
T | ! | | l L]
o 2 4 6 8 10 12
Z (kpc)

FIG. 2. (Top) The density D(Z) perpendicular to the galactic plane
for the four data sets listed in Table II, III, and V. (Bottom) Decom-
position of the observed log D(Z) function into three components
using the calculated densities shown in Fig. 1.
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made by fitting each of the three calculated relations from
Fig. 1 to appropriate sections of Fig. 2(a). The fit is unique
and is well determined in Fig. 2(b) to give the density ratios
at Z = Q between the thin disk, the thick disk, and the halo to
be 1:0.11:0.005.

b) Comparison with Gilmore and Reid

The procedure described above is the same in principle as
used by Gilmore and Reid in the fitting of fwo exponentials
to their data (the same as Table III here) and reading the
difference in the intercepts at Z = 0 to give the 50 to 1 ratio.
However, their use of only two components neglects the halo
contribution at their furthest point at z = 4.5 kpc. Their re-
sulting thick-disk component has then a necessarily large
scale height of ~1.5 kpc corresponding to o(W) =60
km s ™!, required by the data if the halo component is ne-
glected.

However, our direct evidence from Paper VI (Sandage
and Fouts 1987a) is that o( W) = 42 km s~ ! for the thick-
disk component. Hartkopf and Yoss (1982) obtain the same
value. With this lower o ( W) we are forced to the normaliza-
tion for the thick disk which we have made in Fig. 2(b),
showing that at the Gilmore-Reid last data point at 4.5 kpc
the halo must dominate the counts so as to produce the ob-
served flattening of the D(Z) curve beyond Z~4 kpc. The
resulting scale height is ~3.2 kpc.

We now ask whether d log,, D(Z)/dZ = — 0.14 is con-
sistent with the density distribution p(r) of known halo ob-
jects, measured relative to the center of the Galaxy, where »
is the galactocentric distance. The globular cluster system is
well represented by

P(r)/p(O) =(1+ r)—3.5’ ©

shown most recently by Harris (1976) and Zinn (1985).
The RR Lyraes follow a similar distribution to »~20 kpc
(Kinman et al. 1966; Kinman 1972; Saha 1985), with possi-
bly a steeper decay at larger galactocentric distances.

Numerical experiments show that a Hubble power law of
the form p(r) ~(1 4 r)™" in galactocentric distance r is
very well approximated by an apparent exponential in Z for
the observed density of the halo when it is sampled in a verti-
cal cut above and below the Sun’s position at the distance R,,
from the center. The numerical experiments which were
made assume that R, =8 kpc, p(r) =p(0)/(1+r)", of
course ” = R 2 + Z?, and a spherical halo. The run of p(r)
was computed for various values of n along the vertical cut in
Z, perpendicular to the plane. These densities D(Z) are
what would be observed at height Z for the various 7 values,
as seen from the Sun.

The resulting D(Z), Z plots proved to be remarkably lin-
ear, showing that an exponential approximation to D(Z) for
0 < Z<15kpcis an excellent fit to the (1 + ) " Hubble law
relative to the Galactic center. In this way it is found that d
log,y D(Z)/dZ = — 0.05 for n=3; —0.07 for n=23.5;

—0.09forn=4; —0.12forn=5;and — 0.15for n = 6.

Hence, if we require n = 3.5, our value of — 0.14 in Figs. 1
and 2 is not steep enough. To obtain — 0.07 requires that
o(W) =130 km s~ . This is close to o(W) = 120 km s !
which has been observed for the most metal-poor stars (i.e.,
[Fe/H] < — 2.5) in the sample nearby subdwarfs studied
by Sandage and Fouts (1987b, hereafter referred to as SF,
Table VI).

We conclude from this that if the data in Fig. 2(a) at 10
kpc are correct, then the stars to which we fit a halo gradient
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of — 0.14 are not the most metal poor, but rather have [Fe/
H] =~ — 1.4 whose o(W) =90 km s, again reading from
Table VI of SF. It should be emphasized that the conse-
quences of such a relation of o( W), progressively increasing
with decreasing metallicity, is, indeed, a hierarchy of d
log D(Z)/dZ values that are progressive with [ Fe/H]. This
will, of course, set up a true chemical gradient in the halo—a
still controversial result observationally.

The fit to the data in Fig. 2 has very little arbitrariness. It is
not possible to fit a halo component with a slope of — 0.07 to
the last observed data point at Z = 10 kpc and still retain the
gradient of d log,, D(Z)/dZ = — 0.64 for the thick-disk
component, and thereby fit all the data points in Fig. 2(a)
using any set of normalization factors. The conclusion is that
if — 0.07 is the required halo slope, then the last observed
data point at Z = 10 kpc in Fig. 2 is too low and should be
moved up by ~0.4 dex. This factor may be within the errors
of the present count and resulting density data, but this re-
mains a problem with the present material on the stated as-
sumptions of the halo gradient.

If we arbitrarily move the last point up by 0.4 dex and fit a
“halo” curve of slope — 0.07 to the resulting equivalent of
Fig. 2, we obtain an adequate fit to all the points with nor-
malizations of 1:0.06:0.002 or 500:30:1 for the three compo-
nents. These differ by a factor of ~2 from those in Fig. 2(b).
We use these values as an illustration in the next section to
calculate the mass of the halo assuming the self-consistent
valueof d log,, D(Z)/dZ = — 0.07 that applies to a spheri-
cal* halo with n = 3.5.

V.ESTIMATE OF THE MASS OF STARS IN THE GALACTICHALO

Following the data in the last section, we assume a galac-
tocentric halo density decay of Eq. (6) and a normalization
atthe Sun at R, = 8 kpc of 500 to 1 for the ratio of old disk to
halo density. The mass of stars in a spherical halo structure
of this kind is

M = 47p(0) f (1 4r)~*%dr, @)
0
where p(0) is the mass density at the Galactic center of the

halo component.
The central density p(0) is obtained from D(Z =0,
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R, =8)=p(8 kpc) from Eq. (6) using an assumed local
old-disk density of 0.05 M, pc~> (or 510" M, kpc™)
and a disk-to-halo ratio of 500:1, giving Dy,
(8) = 10°M, kpc™>. This local halo density should be
compared with Schmidt’s (1975) value of 1.7Xx10°
Mg, kpc™> and Eggen’s (1987) higher value of 4X10°
Mg, kpc—>. The agreement of these three values to within a
factor of ~4, each using widely different methods, seems
quite satisfactory. From Eq. (6), p(0)/p(8) =2.2X 10%,
giving p(0) = 2X 10° M, kpc ™~ for the density of the halo
component at the center.
Integration of Eq. (7) gives

M(halo) = 4mp(0)[2 — 4+ 3] = 13p(0), (8)
or

M (halo) =3X10° M.

This is a very weak stellar halo, comprising only ~2% of
the Galactic mass. This mass in stars is an order of magni-

tude lower than that proposed by Ostriker and Peebles
(1973) for the total mass of the halo.

*A formal way to obtain the observed vertical gradient of d log,, D(Z)/
dZ = — 0.14 for a galactocentric Hubble density decay with n = 3.5 is to
severely flatten the halo. If we assume the halo to be an oblate ellipsoid (two
equal axes in the plane and a flattened vertical axis) of axial ratio b/
a= (1 — €%)''? where eis the eccentricity by definition, a numerical exper-
iment such as described above, reading at each r the equivalent R along the
major axis (in the plane) that has the same D(r), i.e., along the isodensity
ellipse, steepens the calculated d log D(Z)/dZ gradient. The relation
between the galactocentric radius 7 and the equivalent major-axis distance
R is the equation of an ellipse as

r 1—¢? 172

R _(1 —ezcoszﬁ)

where @is the angle between the major axis and the radius vector , evidently
given by 6 = arcsin (Z/r), or @ = arctan (Z /R,) =arctan (Z/8) in our
example. Experimentation shows that for b /a = 0.6, the vertical gradient at
R, = 8 becomes d log D(Z)/dZ = — 0.14 for n = 3.5. The data in Fig.
2(b) could then be taken to mean that the halo is so flattened. However, the
actual observed gradient for RR Lyrae stars in the pole by Kinman et al.
(1966) is — 0.07 rather than — 0.14, and the explanation seems, therefore,
unlikely because the Lick polar data for the variables are consistent with a
spherical halo.
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