The highest redshift X-ray selected AGN

Brusa et al., 2009, ApJ 693, 8 (XMM-COSMOS) Clvano, Brusa et al. 2011, ApJ 741, 91 (C-COSMOS) + flash on new results

Importance of high-z QSO

- How and when do early BHs form and grow?

Plenty of models in hierarchical scenario (see e.g. Rees 1978 ... Begelman+10, etc.) Formation paths from BH seeds + (Eddington limited) accretion modes What is the high-z BH mass <u>and</u> luminosity function?

- What formed first, BH or galaxy?

Some evidence for larger BH per fixed stellar mass up to $z\sim4$ (see e.g. Peng+06, Merloni+10). But also suggestions for $M_{BH}/M_*\sim0.1-0.3$ in SMG/QSO2 at z>2 (Alexander+05)

QSOs at high-z: where do we stand

About **40** QSOs **optically selected** at z>5.7, ~15 at z>6, mostly from SDSS and CFHQZ, logL(bol)~47. [UKIDSS/VISTA results NOT included]

Fan+2001-06; Willott et al. 2010 Jiang et al. 2010 z ~ 6 Luminosity Function

Mortlock et al. 2011: record holder at z=7.1

They are already "mature": large (~3-7 x 10⁹ M_{sun}) BH masses

high metallicity and dust content, not significantly different from lower-z QSO (Beelen+06, Juarez +09, Kurk +09; but see also Jiang+10)

They are accreting at L~L_{edd}

(required in order to get the BH mass in less than 1 Gyr from stellar mass seeds) **Challenge for structure formation models**

QSOs at high-z: where do we stand

About **40** QSOs **optically selected** at z>5.7, ~15 at z>6, mostly from SDSS and CFHQZ, logL(bol)~47. [UKIDSS/VISTA results NOT included]

Fan+2001-06; Willott et al. 2010 Jiang et al. 2010 z ~ 6 Luminosity Function

Mortlock et al. 2011: record holder at z=7.1

They are already "mature": large (~3-7 x 10⁹ M_{sun}) BH masses high metallicity and dust content, not significantly different from lower-z QSO (Beelen+06, Juarez +09,

They are accreting at L~L_{edd}

Kurk +09; but see also Jiang+10)

(required in order to get the BH mass in less than 1 Gyr from stellar mass seeds) **Challenge for structure formation models**

Likely not representative of the entire QSO population. There could be (many ?) more lower L and obscured AGN missed by optical selection (dust).

X-rays from high-z QSO

X-rays needed to get the LF faint end (more representative of the whole high-z pop)

2000-2010: Chandra/XMM contribution Follow-up of optically SDSS QSOs (Brandt+02, Mathur+02, Vignali+03,05; Willott+03)

First complete & statistically significant samples of X-ray selected z~3-4 QSOs (Brusa+09, Aird+10)

The number of high-z AGN detected so far

	Optical	X-ray
2 > 3	8000	~100
:>4	1500	~20
: > 5	150	3-5
> 6	~15	0

bust statistics still *low for z>4* Present X-ray surveys still limited by sensitivity over solid angle

X-rays from high-z QSO

X-rays needed to get the LF faint end (more representative of the whole high-z pop)

2000-2010: Chandra/XMM contribution Follow-up of optically SDSS QSOs (Brandt+02, Mathur+02, Vignali+03,05; Willott+03)

First complete & statistically significant samples of X-ray selected z~3-4 QSOs (Brusa+09, Aird+10)

The number of high-z AGN detected so far

	Optical	X-ray
z > 3	8000	~100
z > 4	1500	~20
z > 5	150	3-5
z > 6	~15	0

bust statistics still *low for z>4* Present X-ray surveys still limited by sensitivity over solid angle

(soft) X-ray samples, combine spectro-z + photoz Brusa et al. 2009 / Civano et al. 2011

I) C-Cosmos catalog (Elvis et al. 2009, Civano et al. 2012): 76 sources (no cut in flux limit)

2) Selection on the basis of spectro-z and photoz (Salvato et al. 2011)
65 objects, 29 with specz>3, 36 with photoz>3

		S	UMN	MARY	OF	ABL	E 1 E Z > 3	3 SAL	MPL	E.		
	1	Total		5	Spec.	2	ł	Phot.		Pho	ot.+1	$\sigma > 3$
	S	Н	F	S	H	F	S	H	F	S	н	F
z>3	81	14	6	29	2	0	36	10	4	16	2	2
z>4	14	1	1	6	0	0	7	1	0	1	0	1
z>5	4	0	1	2	0	0	2	0	0	0	0	1
	'	Total		Spec.			Phot.			Phot. $+1\sigma > 3$		
	S	H	F	S	H	F	S	H	F	S	Н	F
z>3	73	8	3	28	1	0	30	6	2	15	1	1
z>4	13	0	0	6	0	0	6	0	0	1	0	0
z>5	3	0	0	2	0	0	1	0	0	0	0	0

(soft) X-ray samples, combine spectro-z + photoz Brusa et al. 2009 / Civano et al. 2011

I) C-Cosmos catalog (Elvis et al. 2009, Civano et al. 2012): 76 sources (no cut in flux limit)

2) Selection on the basis of spectro-z and photoz (Salvato et al. 2011)
65 objects, 29 with specz>3, 36 with photoz>3

		S	UMN	MARY	T/ OF	ABL	E 1 E Z>:	3 SAL	MPL	E.		
	Total Spec. Phot. Phot.+1a											$\sigma > 3$
	S	н	F	S	H	F	S	H	F	S	H	F
z>3	81	14	6	29	2	0	36	10	4	16	2	2
z>4	14	1	1	6	0	0	7	1	0	1	0	1
z>5	4	0	1	2	0	0	2	0	0	0	0	1
	'	Total		Spec.			Phot.			Phot. $+1\sigma > 3$		
	S	H	F	S	H	F	S	H	F	S	Н	F
z>3	73	8	3	28	1	0	30	6	2	15	1	1
z>4	13	0	0	6	0	0	6	0	0	1	0	0
z>5	3	0	0	2	0	0	1	0	0	0	0	0

(soft) X-ray samples, combine spectro-z + photoz Brusa et al. 2009 / Civano et al. 2011

I) C-Cosmos catalog (Elvis et al. 2009, Civano et al. 2012): 76 sources (no cut in flux limit)

2) Selection on the basis of spectro-z and photoz (Salvato et al. 2011)
65 objects, 29 with specz>3, 36 with photoz>3

		S	UMN	MARY	T/ OF	ABL	E 1 E Z>3	3 SAL	MPL	E.		
	Total Spec. Phot. Phot. $+1\sigma > 3$											
	S	Н	F	S	H	F	S	H	F	S	Н	F
z>3	81	14	6	29	2	0	36	10	4	16	2	2
z>4	14	1	1	6	0	0	7	1	0	1	0	1
z>5	4	0	1	2	0	0	2	0	0	0	0	1
	'	Total		Spec.			Phot.			Phot. $+1\sigma > 3$		
	S	Н	F	S	H	F	S	H	F	S	Н	F
z>3	73	8	3	28	1	0	30	6	2	15	1	1
z>4	13	0	0	6	0	0	6	0	0	1	0	0
z>5	3	0	0	2	0	0	1	0	0	0	0	0

(soft) X-ray samples, combine spectro-z + photoz Brusa et al. 2009 / Civano et al. 2011

1) C-Cosmos catalog (Elvis et al. 2009, Civano et al. 2012): 76 sources (no cut in flux limit)

2) Selection on the basis of spectro-z and photoz (Salvato et al. 2011)
65 objects, 29 with specz>3, 36 with photoz>3

(soft) X-ray samples, combine spectro-z + photoz Brusa et al. 2009 / Civano et al. 2011

I) C-Cosmos catalog (Elvis et al. 2009, Civano et al. 2012): 76 sources (no cut in flux limit)

2) Selection on the basis of spectro-z and photoz (Salvato et al. 2011)
65 objects, 29 with specz>3, 36 with photoz>3

Color color selection v-I vs. b-v (proposed, e.g. in Casey et al. 2008, Siana et al. 2007)

8 objects would not have been selected

Color color selection v-I vs. b-v (proposed, e.g. in Casey et al. 2008, Siana et al. 2007)

8 objects would not have been selected

Color color selection v-I vs. b-v (proposed, e.g. in Casey et al. 2008, Siana et al. 2007)

8 objects would not have been selected

Color color selection v-I vs. b-v (proposed, e.g. in Casey et al. 2008, Siana et al. 2007)

8 objects would not have been selected

~40 (magenta/yellow) contaminants

high-redshift universe: source counts

data from COSMOS survey

Brusa et al. 2009 (XMM), Civano, MB+11 (Chandra)

selection based on <u>spectro-z</u> and <u>photoz</u> (from Salvato+09 & in prep) ~80 objects, 50% specz

in C-COSMOS 14 at z>4 (6 spectro-z) 4 at z>5 (2 spectro-z) 1 at z>6 (photoz)

predictions XRB models: from Gilli+2007 (with a decline in the space density) Aird+2010 LF

SAM models: from Shankar+2010 & in prep different curves --> different AGN lightcurves and minimum halo mass degeneracy within the two parameters, z dependence?

See F. Shankar talk

high-redshift universe: source counts (new data)

high-redshift universe: space density

high-redshift universe: space density

Civano et al. 2011

low-LAGN

lower-L objects within the reach of Chandra large programs (Visionary) and in next generation telescopes... (ATHENA, WFXT.....)

high-L QSO

z>6: completely uncharted territory
predictions/extrapolations for high-z
Universe very uncertain, even by >
1 order of mag

NOT a single (confirmed) data point! (not even at the highest luminosities, e.g. Lx>45)

eROSITA will provide the first statistically significant sample of z>6 QSOs at Lx>45.5

~30 in the all-sky at logLx>3e45 erg/s

number of high-z QSOs in eROSITA

number of high-z QSOs in eROSITA

Stacking results (1)

signal from z>6 samples (WFC3, dropouts etc.)

"Positive" result

Figure 4 | Stacked *Chandra* images for the z=6 galaxy sample in the soft (*left panel*) and hard (*right panel*) X-ray bands. The detections are significant at the 5 and 6.8 - σ levels respectively. Each image is 30"×30". The *white circle* at the center of each image has a radius of 3". Images were adaptively smoothed using a minimum scale of 3 pixels, a maximum scale of 5 pixels and minimum and maximum significances of 3 and 6 respectively.

"Negative" result

FIG. 1: Stacks of Chandra images at the position of 210 and 77 Bouwens et al. [3] candidate z~ 6 − 7 galaxies in four energy bands: 0.5-2 keV, 2-7 keV, 0.8-4 keV and 1.5-5.5 keV.

Fiore+2012b

a factor ~3 lower than Treister (upper limit)

Stacking results (2)

Soft Band

Soft Band

Hard Band

Willott et al. 2011 reproducing Treister results

background subtraction / no sigma clipping

sigma clipping in source+bkg (consistent with Fiore+2012b)

sigma clipping only in the bkg

Soft Band

Friday, June 8, 2012

Summary

- High-fluxes / High-L regime Well constrained up to z~4

Need same statistics (few tens) up to z~6 --> Wide area X-ray surveys (eROSITA!) comparison with SDSS / BOSS/ eBOSS QSO give insight in obscuration

- Low-fluxes / low-L regime Predictions "wildly" different

sensitivity & small PSF needed XVP today is only viable tool...

- Stacking perspectives huge.... but to be "tuned" (smaller energies bands? Iron line search? larger samples?)