z~6 @ LBT

P.I. Roberto Gilli Co.I.: M. Mignoli, C. Vignali, A. Comastri, F. Vito, G. Zamorani, N. Cappelluti, M. Rovilos, I. Georgantopoulos, P. Ciliegi, E. Sani

Starting Point

Thumbnail images of the LBG candidates in the QSO field. The properties of the individual sources are listed in

Utsumi et al. (2010) found seven candidate LBGs at $z \sim 6.4$ around the bright quasar CFHQS J2329-0301 at z = 6.43. The LBG surface density is 7 times larger than that in a comparison field (the SDF), suggesting that the QSO field hosts an overdense region, when defined on a sufficiently large scale (i.e. larger than an HST/ACS pointing).

LBC Proposal

Application for LBT observing time

Period Feb 2012-Jun 2012 Deadline: Nov 8th, 2011, 2pm CEST

Submit using: www.tng.iac.es/lbt/submit

Category: B

1. Title

Mapping the primordial environment of QSOs at $z\sim 6$

2. Abstract

Luminous QSOs at very high redshifts, $z\sim 6$, are believed to reside in the most massive dark matter halos collapsed at that time. They should then trace early large-scale structures, and the fields around $z\sim 6$ QSOs may be expected to show galaxy overdensities on scales up to tens of Mpc. Current observations, mainly performed with the $3'\times 3'$ HST/ACS camera, still are unable to support or disprove this scenario, since the small area covered by an ACS pointing ($\sim 1\times 1$ Mpc at $z\sim 6$) is a serious limitation to these measurements. We propose here to exploit the unique etendue (product between collecting area and field of view) of LBC ($111~\text{m}^2\times 0.16~\text{deg}^2$) to obtain deep r,i and z-band imaging of the fields around 6 of the most massive black holes at $z\sim 6$, and find co-eval galaxies as i-band dropouts. Our observations will finally probe what is the typical environment of these objects posing a fundamental observational constraint to models of BH/galaxy evolution. Remarkably, recent observations, similar to those proposed here and performed with the wide-field Suprime-Cam at Subaru, have revealed a significant galaxy overdensity around a z=6.4~QSO.

APPROVED! Ranked 2nd

LBC Proposal

- Deep LBC imaging in r,i and z around six four of the most massive BH at z~6.
- Selection of i-band dropouts: 1) i z > 1.3 2) S/N(z) > 5
- 1.5 hrs in both z_{SDSS} and i_{SDSS} on the LBC-red channel, and simultaneous 3 hrs in r_{SDSS} on the LBC-blue channel
- Estimated AB limits of z=25.6 (S/N=5), i=27.2 (S/N=3) and r=28.3 (S/N=2). [Utsumi dropouts with $z\sim25.0-25.4$]
- Assuming structures similar to Utsumi (2010), we estimate that ~36 i-band dropouts will be found by our program
- Possible spectroscopic follow-up program with MODS1

The target QSO fields

Target sample					
Name	2	M_{1450}	M_{BH}	z_{SDSS}	Ref.
		1100	$(10^9 M_{\odot})$	(AB mag)	
SDSSJ1148+5251	6.41	-27.8	4.9	20.1	De Rosa et al. 2011
SDSSJ1030+0524	6.28	-27.2	3.2	20.0	De Rosa et al. 2011
SDSSJ1048+4637	6.20	-27.6	3.9	19.9	De Rosa et al. 2011
FIRST J1427+3312	6.12	-26.9	1.3	20	McGreer et al. 2006
SDSSJ1411+1217	5.95	-26.8	1.2	19.6	De Rosa et al. 2011
O0000 + 6000	5.47	-27.0	10.2	<u>-</u>	Domani et al. 2004
Q0300 0330	0.11	21.0	10.2		1001110111 00 001. 2001

Data at all wavelengths - from X-rays to radio - are available for all the fields

TAC eliminated two radio quasars. Why? The radio emission is a good proxy for massive halos

The Observations

- All the four fields have been observed by LBC (March-May 2012).
- Data reduced by the LBC team available soon (three out of four already released to us). Trouble with the March data due to a very bright star in the upper CCD.
- Images look exceptional... I would stress the word "look"
- Seeing in the range 0.6-0.9 arcsec
- The final photometric catalog is projected to contain approximately 2-3x10⁵ objects.

Now the *real* work is starting...

- Searching for an excess of i-dropouts in the four QSO fields
- Exploiting the multi-wavelength data
 - X-rays: for SDSS1030 deep 100ks XMM observations
- Searching for over-densities of red objects (z>1 clusters)
- ???
- Suggestions are welcome! Help too...