# High redshift galaxies and AGN with Euclid

G. Zamorani INAF - OABO

### Legacy science with Euclid

- Depth/area combination in the near-ir
- High spatial resolution
- Large number of spectra

# Legacy SWGs

- Primeval Universe
- Galaxy and AGN Evolution
- Strong Gravitational Lensing
- Clusters
- Local Universe
- Milky Way and Resolved Stellar Populations
- Supernovae and Transients
- Exoplanets (microlensing)

#### The scope of the Euclid near-ir imaging

- Wide survey 15,000 deg<sup>2</sup> YJH<sub>AB</sub>=24 would take 680 years with VISTA or 66 years with SASIR (Synoptic All-Sky Infrared Survey - 2017)
- Deep survey 40 deg<sup>2</sup> YJH<sub>AB</sub>=26 would take 72 years with VISTA or 7 years with SASIR
- The Euclid surveys are >100 times more ambitious than anything underway and at least >10 times more ambitious than anything else currently conceived

## Deep fields locations

- 40 deg<sup>2</sup> YJH 26AB Vis 27.5AB
- Default location SEP, NEP
- Very strong science case for 6deg<sup>2</sup> in Subaru Hypersuprimecam deep fields
  - 3deg<sup>2</sup> in SXDS/UDS 2<sup>h</sup>18<sup>m</sup>-5<sup>o</sup>
  - 3deg<sup>2</sup> in COSMOS 10<sup>h</sup>00<sup>m</sup>+2<sup>o</sup>
- Remainder split between SEP, NEP
  - Advantage of NEP is Hypersuprimecam access for deep z imaging
  - Advantage of SEP is ESO access

# Euclid legacy in numbers

| What                                                                                                                                                                     | Euclid                              | Before Euclid                        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------|--|
| Galaxies at 1 <z<3 estimates<="" good="" mass="" td="" with=""><td>~2x10<sup>8</sup></td><td>~5x10<sup>6</sup></td></z<3>                                                | ~2x10 <sup>8</sup>                  | ~5x10 <sup>6</sup>                   |  |
| Massive early-type galaxies<br>(1 <z<3) spectra<="" td="" w=""><td>~few x 10<sup>3</sup></td><td>~few tens</td></z<3)>                                                   | ~few x 10 <sup>3</sup>              | ~few tens                            |  |
| H <b>α</b> emitters (0.7 <z<2.0) abundance="" in="" metal="" td="" z~2-3<=""><td>~4x10<sup>7</sup>/10<sup>4</sup></td><td>~10<sup>4</sup>/~10<sup>2</sup>?</td></z<2.0)> | ~4x10 <sup>7</sup> /10 <sup>4</sup> | ~10 <sup>4</sup> /~10 <sup>2</sup> ? |  |
| Galaxies in massive clusters<br>(~450 at M> 4x10 <sup>14</sup> ) at z>1                                                                                                  | ~2x10 <sup>4</sup>                  | ~10 <sup>3</sup> ?                   |  |
| Type 2 AGN (0.7 <z<2)< td=""><td>~104</td><td>&lt;10<sup>3</sup></td></z<2)<>                                                                                            | ~104                                | <10 <sup>3</sup>                     |  |
| Dwarf galaxies                                                                                                                                                           | ~10 <sup>5</sup>                    |                                      |  |
| T <sub>eff</sub> ~400K Y dwarfs                                                                                                                                          | ~few 10 <sup>2</sup>                | <10                                  |  |
| Strongly lensed galaxy-scale lenses                                                                                                                                      | ~300,000                            | ~10-100                              |  |
| z > 8 QSOs                                                                                                                                                               | ~30                                 | None                                 |  |





#### High-z quasars with Euclid

z=7.085 quasar Mortlock et al. 2011



Lya transmission profile resembles damping wing of the IGM with neutral fraction f>0.1. But reionisation predicted to be inhomogeneous process (Mesinger and Furlanetto 2008).

# High-redshift quasars Predictions for future surveys 6.4<z<7.2

| Survey                | Area  | Depth Y<br>(Vega) | Number | complete |
|-----------------------|-------|-------------------|--------|----------|
| UKIDSS                | 3800  | 19.6              | 6      | 2012     |
| VIKING                | 1000  | 20.8              | 9      | 2015     |
| PanSTARRS<br>10 sigma | 20000 | 19.6              | 33     | 2015     |

#### Bright quasars z>8 J<22 from Euclid imaging



Euclid will find  $\sim 30 \ 8.1 < z < 9$  quasars J<22 and 55 quasars J<22.5 (distinguished from galaxies on the basis of morphology)

#### Bright quasars z>8 J<22 from Euclid spectroscopy





Euclid spectroscopy will find  $\sim 20-30$  quasars at z> 8.1

Cross-check between spectroscopy and imaging candidates should eliminate contaminations and confirm reality of high-z quasars

#### The galaxy luminosity function 5<z<8



McLure et al. 2009 bright end of the high-redshift galaxy LF, from the UDS K=22.7 over 0.8 deg<sup>2</sup>

McLure et al. 2010, Castellano et al 2010, z=7 luminosity function



# Euclid deep survey 40deg<sup>2</sup> J<sub>AB</sub>=26



Euclid will detect 100s of bright J<25.5 z>7 galaxies, with small contamination, compared to a handful known today

#### High-redshift galaxies with Euclid deep

- The Euclid z>7 galaxies will be "easy" JWST spectroscopic targets
- Bright galaxies J<25.5 allow spectroscopy for LAE/ LBG clustering studies (McQuinn et al 2007)
- Cross-correlation with 21cm topology of reionisation, bright galaxies are tracers (Lidz et al 2009)
- Stellar population studies: UV slope, HeII 1640 (metallicity, IMF)
- Bright end of LF provides strongest constraints on galaxy formation models

#### Conclusions

•Euclid will be a very powerful mission for the study of the "bright" high-redshift Universe

•Excellent synergy with other space missions (e.g. JWST) which will cover a different parameter space

•Missing matching facility : X-ray

# High-redshift galaxies with Euclid deep: cosmic reionisation

- SFR of detected galaxies at z=8 insufficient to keep universe ionised (Bouwens et al 2010)
- Ways out
  - Steep faint end LF slope
  - Escape fraction
  - IMF
  - Reionisation was later



#### Deep fields locations NEP 10x10deg<sup>2</sup> leg<sup>2</sup> 40deg<sup>2</sup> with E(B-V)<0.03 <5° from NEP

#### SEP 10x10deg<sup>2</sup> 40deg<sup>2</sup> with E(B-V)<0.06 <5° from SEP

