AGN FEEDBACK IN GALAXY GROUPS

— THE CASE OF HCG 62 —

Myriam Gitti
(SAO-CfA)

E. O'Sullivan (SAO-CfA), S. Giacintucci (SAO-CfA),

L. David (SAO-CfA), J. Vrtilek (SAO-CfA),

S. Raychaudhury (Univ. Birmingham), P. Nulsen (SAO-CfA)

C. Jones (SAO-CfA), W. Forman (SAO-CfA), T. Ponman (Univ. Birmingham)

Cooling flow regulation in galaxy clusters and groups

Main candidate to solve the "Cooling Flow Problem":

Feedback by central AGN

MS0735.6+7421

McNamara et al. 05, 09

McNamara & Nulsen 07

Gitti et al. 07

Rich clusters: detection of X-ray cavities and AGN-driven shocks

⇒ dominant contribution from (recurrent) outbursts from the central AGN, hosted by the cD galaxy at the center of (almost) every cool core clusters

Why do galaxy groups matter?

Groups are the location of most galaxies in the Universe (Eke et al. 2004)

Examining outbursts in systems smaller than the well-studied rich clusters is valuable for a number of reasons:

- shallow group potential \Rightarrow large impact on intragroup medium;
- low pressure environment \Rightarrow more apparent radio/thermal gas interaction;
- significant influence on galaxy evolution

The project: a joint X-ray / radio study

For a sample of 18 X-ray bright groups of galaxies:

X-ray data:

archival *Chandra* and/or *XMM-Newton* observations

Low frequency radio data:

GMRT observations at 150, 235, 327 & 610 MHz

geometry, physical state, and energetics of the hot gas

loci of energy injection, history of AGN outbursts through spectral aging of electrons

- * How do X-ray and radio structures correlate?
- * What are the properties of the central radio source and what do they imply for ages, outburst cycles,..?
- * What are the effects of AGN at various phases of activity?
- * What are the mechanisms of energy injection?

Targets and status of the GMRT observations

Group Name	235 MHz	610 MHz
UGC 408	X	X
NGC 315	X	X
NGC 383	X	X
NGC 507	X	X
NGC 741	X	X
HCG 15	X	X
NGC 1407	X	X
NGC 1587	X	X
MKW 2	X	X

Group Name	235 MHz	610 MHz
NGC 3411	Χ	X
NGC 4636	X	X
HCG 62	X	Χ
* NGC 5044	Χ	Χ
NGC 5813	X	-
NGC 5846	-	Χ
* AWM 4	X	Χ
NGC 6269	Χ	Χ
NGC 7626	X	Χ

All have Chandra and/or XMM data

- Temperatures 1-3 keV
- All have at least NVSS 1.4 GHz data initially
- Presence of X-ray or radio structure indicative of AGN interaction with hot gas

observed at 150 MHz observed at 327 MHz

Targets and status of the GMRT observations

Group Name	235 MHz	610 MHz
UGC 408	X	X
NGC 315	X	X
NGC 383	X	X
NGC 507	X	X
NGC 741	X	X
HCG 15	X	X
NGC 1407	X	X
NGC 1587	X	X
MKW 2 Giacintucci et al. 2007		

Group Name	235 MHz	610 MHz
NGC 3411	Χ	Χ
NGC 4636	Baldi et al. 2009	
HCG 62	Gitti et	al. in prep.
* NGC 5044	David et al. 2009	
NGC 5813	X	-
NGC 5846	-	Χ
* AWM 4 Giacintucci et al. 2008		
NGC 62 6 9	X	Χ
NGC / 626	X	Χ

Data for all groups will be presented in Giacintucci et al. in prep.

New Chandra data O'Sullivan et al. in prep. * see posters!
David et al.
Giacintucci et al.
Vrtilek et al.

The compact group of galaxies HCG 62 (z = 0.014)

- One of the most intrinsically luminous of the 100 Hickson compact groups: $L_X \approx 10^{43} \text{ erg s}^{-1}$
- VLA 1.4 GHz : S = 6.6 mJy
- Very clear, small X-ray cavities (radio ghost)
 first detection in a galaxy group

beam=18"×12" lowest contour at 0.3 mJy/beam

- central region dominated by 4 early-type galaxies
- NGC 4778 possibly interacting with NGC 4761 (*Spavone et al. 06*)

X-RAY DATA: *Chandra* 50 ks (2000)

raw 0.5-2.0 keV ACIS

Unsharp masked image

X-RAY DATA: *XMM* 90 ks (2007)

(new!) RADIO DATA: GMRT 2h (2008)

610 MHz:

r.m.s. = $65 \mu Jy/beam$ S = 12.8 mJy (6.9 mJy core)

 $\alpha^{235}_{610} = 1.42$

235 MHz:

r.m.s. = 230 μ Jy/beam S = 49.6 mJy (15.1 mJy core)

(Giacintucci et al., in prep.)

X-RAY / RADIO INTERACTION

$$E = rac{\gamma p V}{\gamma - 1}$$

$$P_{cav} = 3.9 \times 10^{42} \text{ erg s}^{-1}$$
 (Rafferty et al. 06)

The AGN outburst is currently supplying about twice the power lost by radiation within the cooling region

$$L_{[10MHz-10GHz]} = 4 \times 10^{38} \,\mathrm{erg} \,\mathrm{s}^{-1}$$

The radio luminosity is much less than the mechanical power

⇒ radiative efficiency ~ 10⁻⁴

X-RAY / RADIO INTERACTION

- Pressure -

Cavity N:

$$P_X / P_{radio} \sim 4$$

Cavity S:

$$P_X / P_{radio} \sim 2$$

The cavities are close to pressure balance

Vice versa:

$$E_{pr} = k E_{el}$$

k = [6-27] required for pressure equilibrium

Energy budget —

$$P_{cav} = 3.9 \times 10^{42} \text{ erg s}^{-1}$$
 (Rafferty et al. 06)

The AGN outburst is currently supplying about twice the power lost by radiation within the cooling region

$$L_{[10MHz-10GHz]} = 4 \times 10^{38} \,\mathrm{erg} \,\mathrm{s}^{-1}$$

The radio luminosity is much less than the mechanical power

 \Rightarrow radiative efficiency $\sim 10^{-4}$

SHOCK FRONT – *Chandra* SB profile

 $R_{\text{shock}} = 35.7 \text{ kpc}$

SHOCK FRONT – *Chandra* T profile

Shock model properties:

- Mach = 1.45
- Energy = 6.2×10^{57} erg
- Age = $2.7 \times 10^7 \, \text{yr}$
- Power = 7.3×10^{42} erg s⁻¹ $\sim 2 \times P_{cav}$

SHOCK FRONT – Chandra vs. XMM T profile

Shock model properties:

- Mach = 1.45
- Energy = 6.2×10^{57} erg
- Age = $2.7 \times 10^7 \, \text{yr}$
- Power = 7.3×10^{42} erg s⁻¹ $\sim 2 \times P_{\text{cav}}$

A cold front?

Work in progress...

TEMPERATURE MAP

Fe-ABUNDANCE MAP

Summary

- Elliptical-dominated galaxy groups are an ideal laboratory to investigate AGN-driven feedback:
 - Groups show generally similar phenomenology to clusters, with many radio and X-ray features that are the direct result of AGN activity
 - Groups are an important/dominant locus for evolution of baryonic material
- Our analysis of HCG 62 demonstrates the power of a combined X-ray / (low-frequency) radio approach to the feedback problem:
 - Low-frequency radio emission detected in the cavities
 - "Light" hadronic jets (*k*~10-30)
 - Detection of shock front with $M \sim 1.45$, $E_{\text{shock}} \sim 3 \times E_{\text{cav}}$

- A similar study will be carried out for other individual interesting groups in the sample (e.g., NGC 3411, NGC 1407, NGC 741..)
- Statistical analysis and study of X-ray/radio properties of the whole group sample (in progress..)