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LCDM fits the WMAP
data well.
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Inverse problems

Most data analysis problems are inverse problems. You have a set of data x, and you wish
to interpret the data in some way. Typical classifications are:

e Hypothesis testing
e Parameter estimation
e Model selection

Cosmological examples of the first type include

e Are CMB data consistent with the hypothesis that the initial fluctuations were gaussian,
as predicted by inflation theory? (see C. Porciani lectures)

e Are large-scale structure observations consistent with the hypothesis that the Universe
is spatially flat?

Cosmological examples of the second type include

e In the Big Bang model, what is the value of the matter density parameter?
e What is the value of the Hubble constant?

Model selection can include slightly different types (but are mostly concerned with larger,
often more qualitative questions):

e Do cosmological data favour the Big Bang theory or the Steady State theory?
e Is the gravity law General Relativity or higher-dimensional?
e Is there evidence for a non-flat Universe?



* VSA CMB
experiment

(Slosar et al 2003)

H=0.7%£0.1

Priors: A20
10 < age <20 Gyr

-0.2-0.1 0 0.1 0.2
q,

P S ———

10 12 14 16 8 20
Age

0.1 0.2

Yy

0 05 1

%

03 04

15 200 10 20 W 40 5
1°1°A.

5

3

'

s

15 2 0 0102030405

T



N

'

1.2




Do you change your choice?

This is the Monty Hall problem




Questions:

1. Prove that (C1),,=-C'C,,C!
2. Prove that (InC),, = C1C,,.
3. Prove that Indet C = Tr1n C.



Combining datasets
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ICOSMO.org

Initiative Tools Resources Help

Contact Us

FAQs

INITIATIVE FOR COSMOLOGY

Welcome!

This site is designed to make cosmology calculations easy and pain-free. Here, you will
find a host of tools and resources for performing calculations, ranging from distance
calculations to cosmological error predictions for future surveys.

The site also contains a set of tutorials and links that are useful whether you are a newbie
to cosmology or a seasoned professional. These resources have been made available in
an easy-to-access format and will be continually updated and expanded.

C0oSMOLOGY TOOLS:
You can perform a calculation either by using your web browser or by downloading the

QuickStart Calculator
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QuickStart Cosmology

source code. To get started you can either go to tools, and you will be guided through
each step. Alternatively, you can use the QuickStart Calculator to the right.

COSMOLOGY RESOURCES:

Here you will find general cosmology support materials, such as tutorials and links to
external sites. To find the material you need go to resources or use the QuickStart Tutorial
to the right. If you wish to create your own interactive web pages you can use the
templates available here. A discussion forum for the tools and resources is provided at
Cosmocoffee.

QuickStart Tutorial

@ Gravitational Lensing
_ Galaxy Correlations
O oMB

QuickStart Tutorial

NEws:

21/05/2009 - w(z) eigenfunctions. Module for astro-ph/0905.3383 to be included in iCosmo v1.2.

20/05/2009 - Hardware-Software balance. Code for astro-ph/0905.3176 can be downloaded here iCosmo PublicAstroCodes.

11/02/2009 - Redshift Distortion & ISW. Module for astro-ph/0902.1759 to be included in iCosmo v1.2.

21/01/2009 - Cloud Cosmology. Article available here. Template web pages available here.




Open source Fisher matrices
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Computing posteriors

* For 2 parameters, a grid is usually possible
— Marginalise by numerically integrating along each
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 For >>2 parameters it is not feasible to have a
grid (e.g. 10 points in each parameter
direction, 12 parameters = 10 likelihood
evaluations)




Numerical Sampling methods

« MCMC (Markov Chain Monte Carlo)
e HMC (Hamiltonian Monte Carlo)



Aim of MCMC: generate a set of points in the
parameter space whose distribution function is
the same as the target density.

MCMC follows a Markov process - i.e. the next
sample depends on the present one, but not on
previous ones.




Target density

The target density is approximated by a set of
delta functions (you may need to normalise):

and we can estimate any function f by

| X
f(0) ~ NZf(ez‘)-




Metropolis-Hastings algorithm

— 0O
q(6*(6)

p(acceptance) = min

Metropolis algorithm (special case):

p(6*)
. p(0) ]

min {

1

p(6%)q(0*|0)
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MCMC Algorithm

Choose a random initial starting point in parameter
space, and compute the target density.}

Repeat:

— Generate a step in parameter space from a proposal
distribution, generating a new trial point for the chain.

— Compute the target density at the new point, and accept it
(or not) with the Metropolis-Hastings algorithm.

— If the point is not accepted, the previous point is repeated
in the chain.

End Repeat:



The proposal distribution

* Too small, and it takes a long time to explore
the target

* Too large and almost all trials are rejected
* q~ Fisher size’ is good.




Burn-in and convergence
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You must use a convergence test.
Gelman-Rubin test is most common (see notes)

“Burn-in”

Points are correlated
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Marginalisation

 Marginalisation is trivial

— Each point in the chain is labelled by all the
parameters

— To marginalise, just ignore the labels you don’t
want
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CosmoMC

Cosmological MonteCarlo
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Samples from WMAP 5-yr likelihood combined with deuterium constraint (0805.0594)



Hamiltonian Monte Carlo

We would like to increase the acceptance rate to improve efficiency

HMC works by sampling from a larger parameter space:

M auxiliary variables, one for each parameter in the model.
Imagine each of the parameters in the problem as a coordinate.
Target distribution = effective potential

For each coordinate HMC generates a generalised momentum.

It then samples from the extended target distribution in 2M
dimensions.

It explores this space by treating the problem as a dynamical
system, and evolving the phase space coordinates by solving the
dynamical equations.

Finally, it ignores the momenta (marginalising, as in MCMC), and
this gives a sample of the original target distribution.



Theory

Potential U(B) = - In p(0)
For each ©_, generate a momentum u,.
K.E. K=u"u/2
Define a Hamiltonian
H(6,u) =U(0) + K(u)
and define an extended target density
p(0,u) = exp [-H (6, u)]



Magic of HMC

* Evolve as a dynamical system

6, = u,
| OH
Ug = — aga William Rowan Hamilton

* H remains constant, so extended target
density is uniform — all points get accepted!

* Also, you can make big jumps — good mixing, if
you generate a new u each time a point is
accepted



Complications

Evolving the system takes time. Take big steps.

We don’t know U = - In p (it’s what we are
looking for)

We approximate U (from a short MCMC)

H is therefore not constant

Use Metropolis-Hastings. Accept new point
with probability

min {1,exp [—H(0",u*) + H(6,u)]}



HMC vs MCMC

Variable Value

300 400 500 600 700 800 900 1000
Sequence Number

HMC should be ~M times as fast as MCMC.
Typical speed-ups: factor 4.



Do you change your choice?

This is the Monty Hall problem




Cristiano thinks about drinking a bottle of Irn Bru once every minute. He
decides to drink one with probability p = 0.1.

The distribution tells us that the mean time between drinks is 1/p = 10 minutes

You check at random times and note the time of the last drink, and the next drink,
and record the time between drinks

The expectation value of the time you measure between drinks is 2/p-1 =19 minutes

WHY IS IT > 10 minutes?

Not to be confused with Poisson drinking, which is Drinking Like a Fish



Model selection: in a sense a higher-level question
than parameter estimation

Is the theoretical framework OK, or do we need to
consider something else?

We can compare widely different models, or want to
decide whether we need to introduce an additional
parameter into our model (e.g. curvature)

In the latter case, using likelihood alone is dangerous:
the new model will always be at least as good a fit, and
virtually always better, so naive maximum likelihood
won’t work.



Mr Aand Mr B

* Mr A has a theory that v=0 for all galaxies.

 Mr B has a theory that v = Hr for all galaxies,
where H is a free parameter.

e \Who should we believe?

Hubble’s Data (1929)
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Bayesian approach

 Let models be M, M’

* Apply Rule 1: Write down what you want to
know. Here it is p(M|x) - the probability of the
model, given the data.



More Bayes:
p(x|M)p(M)
p(x)
p(M'|x) _ p(M') [ d6 p(x|6', M")p(6'| M’)

p(M|x) =

p(M[x)  p(M) [ d@p(x|6, M)p(6|M)
Define the Bayes factor as the ratio of evidences:

_ Jdo'p(x|6, M")p(6'| M")

5= " d6p(x16, M)p(6]M)




5 ] 49 p(x|6/, M")p(8'| M)
= Jd8p(x|6, M)p(6]M)

Let us assume flat priors:

p(8|M) = (A8, ...A8,)"!

So priors do not entirely cancel: Segs
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Laplace approximation (analogue of Fisher matrix approach, but for model selection)
1
(p(x/0,M)) = Loexp |36 — 6u)aFas(8 — 0]

F /
2 VAt Ly g o AGL,

\B) = 2m) " e F Lo




L6 — Lo exp (_%5905':05,850,8)
59&%
60,, = —(F'""1)asGpac 0t
Vdet F P

(B) = (2m)~#/?

1
et p ( 9 B ﬁ) 1 +q

q:

Occam’s razor... tends to favour simpler model.



Occam’s razor

Too
- MEN.S complicated
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Ockham chooses a razor

* "entities should not be
multiplied unnecessarily.”
 “The simplest explanation
for a phenomenon is most
likely the correct explanation.”
* “Make everything as simple
as possible, but not simpler.”

- Einstein



Which model is more likely?

Mr A and Mr B

p(model with mean zero)/p(model with extra parameter))=2.2



Jeffreys’ criteria

Evidence:
1 <InB<2.5 ‘substantial’
2.5<InB<5 ‘strong’

InB>5 ‘decisive’

These descriptions seem too aggressive:

— In B=1 corresponds to a posterior probability for
the less-favoured model which is 0.37 of the

favoured model



Extra-dimensional gravity?




Evidence for beyond-Einstein gravity

* How would we tell? Different growth rate

= ga) = e { [ 9 @@~ 1]}

a a’

* y=0.55(GR) 0.68 (Flat DGP model)

* Do the data demand an additional parameter,
V?



Expected Evidence: braneworld
gravity?
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ing

VEGAS sampl

Want a way to sample from a separable function of the parameters.

P(B) = pl(el) pz(ez)---pN(eN)

DENSITY OF SAMPLING POINTS

For correlated parameters,
rotate the axes first (do a
preliminary MCMC).

L
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Use rejection method
in 1D, for example
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Nested Sampling

Skilling (2004)

Sample from the prior
volume, replacing the
lowest point with one from
a higher target density.
L(x)}
See: CosmoNEST (add-on
for CosmoMC()

Multimodal? MultiNEST




Cristiano thinks about drinking a bottle of Irn Bru once every minute. He
decides to drink one with probability p = 0.1.

The distribution tells us that the mean time between drinks is 1/p = 10 minutes

You check at random times and note the time of the last drink, and the next drink,
and record the time between drinks

The expectation value of the time you measure between drinks is 2/p-1 =19 minutes

WHY IS IT > 10 minutes?

Not to be confused with Poisson drinking, which is Drinking Like a Fish



Event B: box b opened

Do you change your choice?

This is the Monty Hall problem




Monty Hall solution

Rule 1: write down what you want

It is p(a|B)

Now p(a|B) = p(B|a)p(a)/p(B)

p(B) = p(B,a)+p(B,b)+p(B,c) (marginalisation)

— p(B) = p(B|a)p(a) + p(B|b)p(b) + p(B|c)p(c)
—p(B)=%x%+0+1x%=W

p(al|B)=Yax¥%/Ye=V



