State of the art

TABLE 1 SUMMARY OF THE COSMOLOGICAL PARAMETERS OF ACDM MODEL AND THE CORRESPONDING 68% INTERVALS

Class	Parameter	$WMAP$ 5-year ML^a	WMAP+BAO+SN ML	$W\!M\!AP$ 5-year Mean b	WMAP+BAO+SN Mean
Primary	$100\Omega_{b}h^{2}$	2.268	2.263	2.273 ± 0.062	2.265 ± 0.059
	$\Omega_c h^2$	0.1081	0.1136	0.1099 ± 0.0062	0.1143 ± 0.0034
	Ω_{Λ}	0.751	0.724	0.742 ± 0.030	0.721 ± 0.015
	n_s	0.961	0.961	$0.963^{+0.014}_{-0.015}$	$0.960^{+0.014}_{-0.013}$
	τ	0.089	0.080	0.087 ± 0.017	0.084 ± 0.016
	$\Delta^2_R(k_0^e)$	$2.41 imes10^{-9}$	$2.42 imes10^{-9}$	$(2.41\pm 0.11) imes 10^{-9}$	$(2.457^{+0.092}_{-0.093}) \times 10^{-9}$
Derived	σ_8	0.787	0.811	0.796 ± 0.036	0.817 ± 0.026
	H_0	72.4 km/s/Mpc	70.3 km/s/Mpc	$71.9^{+2.6}_{-2.7}$ km/s/Mpc	$70.1 \pm 1.3 \text{ km/s/Mpc}$
	Ω_b	0.0432	0.0458	0.0441 ± 0.0030	0.0462 ± 0.0015
	Ω_c	0.206	0.230	0.214 ± 0.027	0.233 ± 0.013
	$\Omega_m h^2$	0.1308	0.1363	0.1326 ± 0.0063	0.1369 ± 0.0037
	z_{reion}^{f}	11.2	10.5	11.0 ± 1.4	10.8 ± 1.4
	t_0^{g}	13.69 Gyr	13.72 Gyr	$13.69 \pm 0.13 \text{ Gyr}$	$13.73 \pm 0.12 \text{ Gyr}$

^aDunkley et al. (2008). "ML" refers to the Maximum Likelihood parameters

^bDunkley et al. (2008). "Mean" refers to the mean of the posterior distribution of each parameter

"Dunkley et al. (2008). "ML" refers to the Maximum Likelihood parameters

^dDunkley et al. (2008). "Mean" refers to the mean of the posterior distribution of each parameter ${}^{e}k_{0} = 0.002 \text{ Mpc}^{-1}$. $\Delta_{\mathcal{R}}^{2}(k) = k^{3} P_{\mathcal{R}}(k)/(2\pi^{2})$ (Eq. [15])

f"Redshift of reionization." if the universe was reionized instantaneously from the neutral state to the fully ionized state at z_{reion}

^gThe present-day age of the universe

(Komatsu et al. 2008)

Baryon abundance

CMB, ratio of acoustic peaks amplitude (Komatsu et al. 2008):

$$\Omega_B h^2 = 0.02273 \pm 0.00062$$

Primordial abundance of deuterium + BBN (e.g. Fields & Sarkar, 2004):

Hubble parameter + Age

- HST Key Project: use Cepheids to calibrate distance indicators (z~0)
- Combining X-ray flux and SZ effect in clusters of galaxies (z~0.5)
- CMB: conformal distance to the decoupling surface (z~1000)

Method	Mean (68% confidence range)	Method	Age	
Hubble Key Project SZE + X-ray	$72 \pm 3 \pm 7$ $60 \pm 4^{+13}_{-18}$ $66^{+14} \pm 15$	WMAP data (ΛCDM) WMAPext+ LSS Globular Cluster Ages	13.4±0.3 Gyr 13.7±0.2Gyr >11−16 Gyr	
$WMAP$ PL Λ CDM model	72 ± 5	White Dwarf OGLEGC-17	> 12.7 ± 0.7 Gyr > 10.4 - 12.8 Gyr	
	Spergel et al. 2003	Radioactive dating	> 9.5 – 20 Gyr	

What after WMAP?

- Improved tests of inflation (deviation from scale invariance, running spectral index)
- Accurate measurements of cosmological parameters (e.g. baryons and dark matter from high-l peaks, dark energy equation of state)
- E-mode polarization, to constrain detailed reionization history, and isocurvature mode contribution
- B-mode polarization? (Tensor modes)
- Tests of non gaussianity (from high S/N maps)
- Secondary anisotropy (SZ, lensing)
- Large-scale anomalies?

Hot/cold spots in the WMAP data

WMAP Syr Temperature map Needlets coefficients

KQ85 + Hot/Cold Spot mask

Pietrobon, Amblard, Balbi, Cabella, Cooray, Marinucci, 2008

parameter	WMAP5	Hot/Cold spot masked $(j4)$	j3-j4 mask
$\Omega_{\rm b} h^2$	0.0227 ± 0.0006	0.0228 ± 0.0006	0.0228 ± 0.0006
$\Omega_{c}h^{2}$	0.110 ± 0.006	0.109 ± 0.006	0.109 ± 0.006
θ_A	1.040 ± 0.003	1.040 ± 0.003	1.040 ± 0.003
τ	0.089 ± 0.018	0.091 ± 0.017	0.089 ± 0.017
ns	0.965 ± 0.014	0.966 ± 0.014	0.966 ± 0.014
$\ln(10^{10} A_{s})$	3.18 ± 0.05	3.17 ± 0.05	3.17 ± 0.05

Planck has just been launched

For details: Planck Blue Book [ESA-SCI(2005)1] [astro-ph/0604069]

Expected performance

SUMMARY OF PLANCK INSTRUMENT CHARACTERISTICS

	LFI				HFI					
INSTRUMENT CHARACTERISTIC										
Detector Technology	HEMT arrays			Bolometer arrays						
Center Frequency [GHz]	30	44	70	1	100	143	217	353	545	857
Bandwidth $(\Delta \nu / \nu)$	0.2	0.2	0.2	0).33	0.33	0.33	0.33	0.33	0.33
Angular Resolution (arcmin)	33	24	14		10	7.1	5.0	5.0	5.0	5.0
$\Delta T/T$ per pixel (Stokes I) ^a	2.0	2.7	4.7	1	2.5	2.2	4.8	14.7	147	6700
$\Delta T/T$ per pixel (Stokes $Q \& U)^a \ldots$.	2.8	3.9	6.7		4.0	4.2	9.8	29.8		

^a Goal (in μK/K) for 14 months integration, 1σ, for square pixels whose sides are given in the row "Angular Resolution".

Three times better resolution than WMAP, an order of magnitude lower noise at 100 GHz. Great frequency coverage for optimal foreground subtraction.

Frequency coverage vs foregrounds

Frequency (GHz)

Planck vs WMAP T maps

94 GHz, 15'

217 GHz, 5'

Planck polarization maps

TT power spectrum

Simulation: WMAP 4 years vs Planck

Dynamics of inflation

Kinney, Melchiorri & Riotto 2001

Scalar spectral index reconstruction

Running spectral index

TE power spectrum

EE power spectrum

Ionization history

- Still large uncertainties: WMAP 5-year data favor optical depth ~0.08 or complete ionization at z~10 in better agreement with LCDM simulations.
- Uncertainties on the optical depth affect accuracy on the estimate of other parameters (e.g. amplitude of fluctuations, spectral index)
- Inclusion of polarization information (EE and TE) is crucial. Better data needed.
- We do not know much about detailed behaviour of ionization fraction vs redshift.

Breaking degeneracies

BB power spectrum

BB detection probability

Tensor amplitude A_t

Cosmological parameters forecast

Parameter	Input Value	June'03	June'03 +2dF	$WMAP_4$	Planck	WMAP ₄ ACT/SPT
Flat+weak priors	5					
$egin{array}{cccccccccccccccccccccccccccccccccccc$	0.2240 0.1180 0.9570 0.108	$\begin{array}{c} 0.00095 \\ 0.011 \\ 0.026 \\ 0.059 \end{array}$	$\begin{array}{c} 0.00090 \\ 0.007 \\ 0.024 \\ 0.056 \end{array}$	$\begin{array}{c} 0.00047 \\ 0.0039 \\ 0.0125 \\ 0.020 \end{array}$	0.00017 0.0016 0.0045 0.005	$\begin{array}{c} 0.00025 \\ 0.0035 \\ 0.0080 \\ 0.021 \end{array}$
+running						
$ \begin{array}{l} \omega_{\rm b} \dots \dots \dots \\ \omega_{\rm c} \dots \dots \\ n_{\rm S}(k_n) \dots \dots \\ n_{\rm run} \dots \dots \\ \tau \dots \dots \dots \\ \end{array} $	$\begin{array}{c} 0.2240 \\ 0.1180 \\ 0.9570 \\ 0.0 \\ 0.108 \end{array}$	$\begin{array}{c} 0.00162 \\ 0.0158 \\ 0.055 \\ 0.033 \\ 0.112 \end{array}$	$\begin{array}{c} 0.00090 \\ 0.007 \\ 0.024 \\ 0.029 \\ 0.074 \end{array}$	0.00047 0.0039 0.0125 0.025 0.019	0.00017 0.0016 0.0045 0.005 0.006	$\begin{array}{c} 0.00025 \\ 0.0035 \\ 0.0080 \\ 0.0092 \\ 0.0266 \end{array}$

PARAMETER FORECASTS FOR WMAP AND PLANCK

Dark energy

Conclusions

- Planck will give definitive measurement of CMB T anisotropy (WMAP ~10% of the total information)
- Good (but not optimal) polarization capabilities: TE, EE, perhaps BB
- Optimal foreground separation
- Accurate imaging will allow real space tests (good for non Gaussianity)