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Population and sample
• A population is any entire

collection of objects (people,
animals, galaxies) from which
we may collect data. It is this
entire group we are interested
in, which we wish to describe
or draw conclusions about.

• A sample is a group of units
selected from the population
for study because the
population is too large to
study in its entirety. For each
population there are many
possible samples.



   Sampling
• Selection of observations intended

to yield knowledge about a
population of concern

• Social sciences: census, simple
random sampling, systematic
sampling, stratified sampling, etc.

• Sample-selection biases (also
called selection effects) arise if
the sample is not representative
of the population

• In astronomy often observational
selection effects must be modeled
a posteriori because sample-
selection is determined by
instrumental limits



Example: extra-solar planets
from Doppler surveys

Mayor et al. 2009
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The method is best at detecting “hot
Jupiters”, very massive planets close to
the parent star. Current experiments
(HARPS) can measure radial velocities of
approximately 1 m/s corresponding to 4
Earth masses at 0.1 AU and 11 Earth
masses at 1 AU. time



Understanding the selection
effects is often the crucial

element of a paper in
astronomy!



What is estimation?
• In statistics, estimation (or inference) refers to the process by

which one makes inferences (e.g. draws conclusions) about a
population, based on information obtained from a sample.

• A statistic is any measurable quantity calculated from a sample of
data (e.g. the average). This is a stochastic variable as, for a given
population, it will in general vary from sample to sample.

• An estimator is any quantity calculated from the sample data which
is used to give information about an unknown quantity in the
population (the estimand).

• An estimate is the particular value of an estimator that is obtained
by a particular sample of data and used to indicate the value of a
parameter.



A simple example
• Population: people in this room

• Sample I: people sitting in the middle row
Sample II: people whose names start with the letter M

• Statistic: average height

• I can use this statistic as an estimator for the average
height of the population obtaining different results from the
two samples



PDF of an estimator
• Ideally one can consider all

possible samples
corresponding to a given
sampling strategy and build
a probability density
function (PDF) for the
different estimates

• We will use the
characteristics of this PDF
to evaluate the quality of
an estimator

Value of estimated statistic



Bias of an estimator

• The bias of an estimator is the difference between the expectation
value over its PDF (i.e. its mean value) and the population value

• An estimator is called unbiased if b=0 while it is called biased
otherwise
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Examples
• The sample mean in an unbiased estimator of the population mean

• Exercise: Is the sample variance an unbiased estimator of the
population variance?
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Examples
• Note that functional invariance does not hold.

• If you have an unbiased estimator S2 for the population
variance σ2 and you take its square root, this will NOT be an
unbiased estimator for the population rms value σ!

• This applies to any non-linear transformation including
division.

• Therefore avoid to compute ratios of estimates as much as
you can.



Consistent estimators

• We can build a sequence of estimators by progressively increasing
the sample size

• If the probability that the estimates deviate from the population
value by more than ε«1 tends to zero as the sample size tends to
infinity, we say that the estimator is consistent



Example
• The sample mean is a consistent estimator of the population mean
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Relative efficiency

• Intuition suggests that we should use the estimator that is closer
(in a probabilistic sense) to the population value. One way to do this
is to choose the estimator with the lowest variance.

• We can thus define a relative efficiency as:

• If there is an unbiased estimator that has lower variance than any
other for all possible population values, this is called the minimum-
variance unbiased estimator (MVUE)€ 

E[( ˆ ϑ 1 −θ0)2]/E[( ˆ ϑ 2 −θ0)2]

Suppose there are 2 or more unbiased
estimators of the same quantity, which one
should we use? (e.g. should we use the
sample mean or sample median to estimate
the centre of a Gaussian distribution?)



Efficient estimators
• A theorem known as the Cramer-Rao bound (see Alan

Heaven’s lectures) proves that the variance of an unbiased
estimator must be larger of or equal to a specific value
which only depends on the sampling strategy (it corresponds
to the reciprocal of the Fisher information of the sample)

• We can thus define an absolute efficiency of an estimator as
the ratio between the minimum variance and the actual
variance

• An unbiased estimator is called efficient if its variance
coincides with the minimum variance for all values of the
population parameter θ0



Accuracy vs precision
• The bias and the variance

of an estimator are very
different concepts (see the
bullseye analogy on the
right)

• Bias quantifies accuracy

• Variance quantifies
precision



Desirable properties of an
estimator

 Consistency
 Unbiasedness
 Efficiency

• However, unbiased and/or efficient estimators do not always
exist

• Practitioners are not particularly keen on unbiasedness. So
they often tend to favor estimators such that the mean
square error, MSE=              , is as low as possible
independently of the bias.
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Minimum mean-square error
• Note that,

• A biased estimator with small
variance can then be preferred
to an unbiased one with large
variance

• However, identifying the
minimum mean-square error
estimator from first principles is
often not an easy task. Also the
solution might not be unique
(the bias-variance tradeoff)
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Point vs interval estimates
• A point estimate of a population parameter is a single value of a

statistic (e.g. the average height). This in general changes with the
selected sample.

• In order to quantify the uncertainty of the sampling method it is
convenient to use an interval estimate defined by two numbers
between which a population parameter is said to lie

• An interval estimate is generally associated with a confidence level.
Suppose we collected many different samples (with the same
sampling strategy) and computed confidence intervals for each of
them. Some of the confidence intervals would include the population
parameter, others would not. A 95% confidence level means that
95% of the intervals contain the population parameter.



This is all theory but how do
we build an estimator in

practice?
Let’s consider a simple (but common) case.

Suppose we perform an experiment where we measure a real-
valued variable X.

The experiment is repeated n times to generate a random
sample X1, … , Xn of independent, identically distributed
variables (iid).

We also assume that the shape of the population PDF of X is
known (Gaussian, Poisson, binomial, etc.) but has k unknown
parameters θ1, … , θk  with k<n.



The old way: method of moments
• The method of moments is a technique for constructing

estimators of the parameters of the population PDF

• It consists of equating sample moments (mean, variance,
skewness, etc.) with population moments

• This gives a number of equations that might (or might not)
admit an acceptable solution



R.A. Fisher (1890-1962)

“Even scientists need their heroes, and R.A. Fisher was the hero of
20th century statistics” (B. Efron)

“Fisher was to statistics what Newton was to Physics” (R. Kass)



Fisher’s concept of likelihood
• “Two radically distinct concepts have been confused under the name of

‘probability’ and only by sharply distinguishing between these can we
state accurately what information a sample does give us respecting the
population from which it was drawn.” (Fisher 1921)

• “We may discuss the probability of occurrence of quantities which can
be observed…in relation to any hypotheses which may be suggested to
explain these observations. We can know nothing of the probability of
the hypotheses…We may ascertain the likelihood of the hypotheses…by
calculation from observations:…to speak of the likelihood…of an
observable quantity has no meaning.” (Fisher 1921)

• “The likelihood that any parameter (or set of parameters) should have
any assigned value (or set of values) is proportional to the probability
that if this were so, the totality of observations should be that
observed.” (Fisher 1922)



The Likelihood function
• In simple words, the likelihood of a model given a dataset is

proportional to the probability of the data given the model

• The likelihood function supplies an order of preference or plausibility
of the values of the θi by how probable they make the observed
dataset

• The likelihood ratio between two models can then be used to prefer
one to the other

• Another convenient feature of the likelihood function is that it is
functionally invariant. This means that any quantitative statement
about the θi  implies a corresponding statements about any one to
one function of the θi by direct algebraic substitution



Maximum Likelihood
• The likelihood function is a statistic (i.e. a function of the data)

which gives the probability of obtaining that particular set of data,
given the chosen parameters θ1, … , θk of the model. It should be
understood as a function of the unknown model parameters (but it is
NOT a probability distribution for them)

• The values of these parameters that maximize the sample likelihood
are known as the Maximum Likelihood Estimates or MLE’s.

• Assuming that the likelihood function is differentiable, estimation is
done by solving

• On the other hand, the maximum value may not exists at all.
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Properties of MLE’s
As the sample size increases to infinity (under weak regularity conditions):

• MLE’s become asymptotically efficient and asymptotically unbiased
• MLE’s asymptotically follow a normal distribution with covariance

matrix equal to the inverse of the Fisher’s information matrix (see Alan
Heaven’s lectures)

However, for small samples,

• MLE’s can be heavily biased and the large-sample optimality does not
apply



The Bayesian way



Bayesian estimation
• In the Bayesian approach to statistics (see Jasper Wall’s lectures),

population parameters are associated with a posterior probability
which quantifies our degree of belief in the different values

• Sometimes it is convenient to introduce estimators obtained by
minimizing the posterior expected value of a loss function

• For instance one might want to minimize the mean square error,
which leads to using the mean value of the posterior distribution as
an estimator

• If, instead one prefers to keep functional invariance, the median of
the posterior distribution has to be chosen

• Remember, however, that whatever choice you make is somewhat
arbitrary as the relevant information is the entire posterior
probability density.



Example I:
the galaxy luminosity

function



(non-parametric estimator)

Courtesy A. Klypin



An example of MLE

Blanton et al. 2003

Schechter function:



Courtesy A. Klypin



Courtesy A. Klypin



Example II:
the galaxy 2-point
correlation function



Courtesy SDSS



Correlation functions

dV1
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dP1 = n dV1

dP12 = n2 (1+ξ(r12)) dV1 dV2

dP123 = n3 (1+ξ(r12)+ ξ(r13)+ ξ(r23)+ζ(r12, r13, r23)) dV1 dV2 dV3

Consider a stationary point process with mean density n and write the
probability of finding N points within N infinitesimal volume elements
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Estimators for ξ
• The traditional technique is

based on a Montecarlo method.

• The probability distribution of
pair separations in the data is
compared with that of a
(computed generated) pseudo-
random process having the
same overall sky coverage and
redshift distribution as the
data.

• This requires detailed
modelling of the observational
sampling strategy.

Zehavi et al. 2004



Common estimators
• Peebles & Hauser (1974):

• Davis & Peebles (1983):

• Hamilton (1993):                                   (self-normalizing)

• Landy & Szalay (1993):

• All estimators are biased when applied to overdense or
underdense samples (i.e. in almost all practical cases). The
first two have a bias which depends linearly on the
overdensity, the second two show a quadratic dependence and
are therefore preferable.
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A comparison of the
estimators

Martinez & Saar 2002


