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Questions



…and answers!



The grand challenge
• d=s+n

• s is a Gaussian variable with zero mean and known variance σ2
s

• n is a Gaussian variable with zero mean and known variance σ2
n

• You measure d, what is your best Bayesian point estimate for s?

• What is the posterior PDF for s?



The taste test
• Suppose you work for a wine-producing

company in Bertinoro

• You want to know if people can tell the
difference between your latest (fancy)
production and the past one

• Twenty-four tasters are given three
identical glasses, one contains the new
wine, the other two the older one.

• The tasters are told that one glass
contains a different product and are
trying to correctly identify it

• Eleven tasters give the correct answer.
What should you conclude?



Statistical inference

• Estimation of population parameters

• Confidence intervals

• Hypothesis testing



The coordinates of statistics
Bradley Efron’s triangle (1998)

Neyman, the Pearson’sde Finetti, Savage
Jeffrey

Fisher



Jerzy Neyman (1894-1981)
“Each morning before
breakfast every single
one of us approaches an
urn filled with white and
black balls. We draw a
ball. If it is white, we
survive the day. If it is
black, we die. The
proportion of black balls
in the urn is not the
same for each day, but
grows as we become
older….Still there are
always some white balls
present, and some of us
continue to draw them
day after day for years.”



Hypothesis testing
(Neyman & Pearson 1933)

1. State the null hypothesis H0 (usually, that the observations are due to pure
chance). This hypothesis is tested against possible rejection under the
assumption that it is true.

2. Formulate an alternate hypothesis HA which is mutually exclusive with H0
(usually, that the observation are due to a combination of a real effect and
chance)

3. Identify a test statistic to assess the truth of the null hypothesis and evaluate
the statistic using the sample data.

4. Assuming that the null hypothesis were true, compute the probability p that
the test statistic assumes a value at least as significant as the one observed.
This requires knowledge of the PDF of the statistic (the sampling distribution).

5. Draw a conclusion by comparing p with a significance value (or confidence level)
1-α (0≤ α ≤1). If p<1-α the observed effect is statistically significant and the
null hypothesis is rejected in favour of HA. If p> α there is not enough evidence
to reject H0 .



Type I and II errors

• When using statistical tests there is always a chance of drawing
wrong conclusions!

• Even for a confidence level of 95% there is a 5% chance of
rejecting H0 when it was actually correct. This is called type I error
and its rate α is called the size of the test.

• It is also possible not to reject H0 when it is actually incorrect. This
is called type II error and its rate is indicated with the letter β.
The quantity 1-β is commonly called the “power” of a test.



Type II errors

• There is little control on β because it also depends on the actual difference
being evaluated which is usually unknown

•  A type II error is a missed opportunity to reject H0 correctly but it is not
an error in the sense that an incorrect conclusion was drawn since NO
CONCLUSION is drawn when H0 is not rejected.



Example: the taste test
• 24 tasters are given 3 glasses, one of the three with a different

wine. The tasters were attempting to correctly identify the one
that was different.

• H0: f=1/3 against HA: f>1/3 with f the fraction of successes

• Statistic: Y=number of successes by the tasters

• If H0 is true (i.e. the different wine is guessed at random), the
probability than Y tasters make the correct choice follows a
binomial distribution with expectation value E(Y)=24/3=8.

• However, in a single experiment, values higher than 8 could happen
by chance.  What critical value YC should we choose to reject H0 if Y> YC?



The taste test

• We want to minimize Type I errors and choose α=0.05.

• Under the null hypothesis, P(Y>11)=0.068 and P(Y>12)=0.028,
therefore we reject the null hypothesis if Y>12.

• The tasting survey found 11 correct choices and the company
concluded that the results were not statistically significant as
P(Y>10)=0.14.



The taste test

• What is the probability they made a type II error?

• Answer: P(Y<13 | f) which depends on the sample size, n, the
type I error probability, α, and the population value of f
(which is unknown)

f=0.5      β=0.581 f=0.7    β=0.031



The Neyman-Pearson criterion
• Type I errors are “false-alarm” errors

• Type II errors are missed detections

• Example, HIV testing. Type I errors would lead to treat someone
who did not contract HIV infection. Type II errors would leave
someone who is infected untreated (and unaware). What is worse?
Would you choose a test with (α=0.05, β=0.02) or with (α=0.02,
β=0.05)?

• The Neyman-Pearson criterion says that we should construct our
decision rule to minimize β while not allowing α to exceed a certain
value, i.e. the most powerful test of fixed size.



The Neyman-Pearson lemma
• Suppose we wish to test the simple null hypothesis H0: θ=θ0 (i.e. a

point hypothesis where the parameters of a model assume a specific
set of values) versus the simple alternative hypothesis HA: θ=θA,
based on a random sample x1,…, xn from a distribution with
parameters θ.

• Let L(x1,…, xn|θ) denote the likelihood of the sample when the value
of the parameters is θ.

• Then the likelihood-ratio test which rejects H0 when

     is the most powerful test of size α.

€ 

Λ(x1,...,xn ) =
L(x1,...,xn |θ0)
L(x1,...,xn |θA )

≤η where P(Λ ≤η |H0) =α



The minimum-χ2 fitting method
• If you have good reasons to think that your measurements contain

random errors following a Gaussian distribution, then the likelihood
function will be given by the product of Gaussian functions

• The log-likelihood is thus proportional to the sum of the squared
residuals:

• The χ2-fitting method consists of minimizing the χ2 statistic by
varying the model parameters.

• Following the Neyman-Pearson lemma, the confidence intervals for
the model parameters will thus correspond to fixed values of Δχ2 =
χ2 - χ2

min (Avni 1976).
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11.309.216.6399%

6.254.612.7190%

3.502.301.0068.3%

3 parameters2 parameters1 parameterSignificance

Values of Δχ2 corresponding to commonly used significance levels



Conventional approach

• Assume (or derive) a theoretical distribution (e.g. Gaussian or
Poisson) for the PDF of a statistic

• Compute confidence levels analytically or numerically



Montecarlo approach
• Assume a theoretical

distribution with some
parameters motivated by the
data

• Generate many samples
extracted from the theoretical
distribution

• Compute a statistic from the
simulated data

• Compare the PDF of the
statistic with the actual
observed data

Population

Data

Sampling

MC sampling

Model for
population

MC sample MC sample MC sample



Mock sample approach
• Simulate the process under

study

• Extract statistical properties
by considering many different
realizations

• Popular in astronomy for
complex quantities (e.g. the
galaxy distribution) for which
it is not easy to guess a
theoretical model for the PDF

• Not reliable if mocks do not
resemble reality



Resampling approach
• “Sampling within a sample”

philosophy. It assumes that the
data are representative of the
population but no assumptions
are made on the population
distribution and parameters.

• The original data are used to
build a large number of
hypothetical samples from which
one computes bias, standard
errors and confidence intervals
of the statistic of interest

• Resampling methods became very
popular after the 1980s when
fast and cheap computing
resources started to be available

Population

Data

Sampling

Re-sampling

Artificial samples



Jackknife resampling
(Quenouille 1949, Tukey 1958)

• The (delete-1) jackknife
focuses on the samples that
leave out one observation at a
time

• The ith jackknife sample
consists of the original data
with the ith observation
removed

• The ith jackknife replica is the
value of the statistic of
interest evaluated using the
corresponding jackknife sample



Jackknife resampling
• The jackknife estimate of the expectation value is obtained

by averaging over all the replicas.

• The difference between this average and the observed value
is the jackknife estimate of the bias.

• The jackknife estimate of the variance is obtained by
computing the sample variance of the N replicas and rescaling
the result to account for the fact we removed only 1 object:
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Jackknife in practice
• Consider the sample (1, 2, 3, 4) and the sample-mean statistic (2.5)

• All jackknife samples are: (2, 3, 4), (1, 3, 4), (1, 2, 4) and (1, 2, 3)

• The corresponding jackknife replicas are:  3, 2.67, 2.33 and 2

• The mean of the jackknife replicas is 2.5 and coincides with the
sample mean. This says that the sample mean is an unbiased
estimator of the population mean.

• The standard deviation of jackknife replicas is 0.37 and, since we
have 4 replicas, the jackknife estimate of the standard error is 0.65



Bradley Efron (b. 1938)



Bootstrap resampling
(Efron 1979)

• Suppose our dataset contains
N iid measurements. A
bootstrap sample is a
collection of N measurements
drawn with replacement from
the original data

• The statistic of interest for a
bootstrap sample is called a
bootstrap replica

• The mean and the dispersion of
the replicas thereby provides
an estimate of bias and
variability of the statistic

“pull up by your own bootstrap”
i.e. “rely on your own resources”



Bootstrapping in practice
• Consider the sample (1, 2, 3, 4) and the sample-mean statistic (2.5)

• Possible bootstrap samples are: (2, 1, 2, 3), (4, 3, 3, 3) and (1, 2, 1, 4)

• The corresponding bootstrap replicas are:  2, 3.25 and 2

• After generating very many bootstrap replicas, the difference
between the value of the original statistic and the mean of the
replicas will be the bootstrap estimate of the bias

• Similarly, the variance around the mean will be a measure of the
dispersion



Comparative example:
confidence interval for the median

• We want to study the height of adult males in Europe. We have a
sample with 15 entries:  180.2, 174.1, 154.7, 170.8, 172.3, 169.5, 174.4,
180.3, 180.4, 182.3, 183.8, 176.1, 178.8, 176.1, 188.6 (all in cm)

• We wish to construct a 95% confidence level for the population median

• How would you proceed?



Classical approach (naïve)
• If we have good reasons to think that the data are iid and obtained

by sampling a normal distribution, we could use a classical approach

• For a normal distribution, it can be demonstrated that the standard
error of the median for large samples of size N asymptotically tends
to (for N→∞)

• Using the sample standard deviation 7.60 as an estimate of σ and
the sample median 176.10 as the central value, we obtain σmed=2.46.
Assuming that also the PDF of the median estimates is normal, we
get that the 95% CL corresponds to 1.96 σmed or:

                           171.3 <median< 180.9
    (note that only 3 datapoints are smaller than 171.3 and only 3

datapoints are larger than 180.9)
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σmed =1.253 σ
N



Classical approach (smart)
• This is an example of non-parametric inference, where we do not

assume a model for the data (Gaussian or whatever) and we do not
estimate any parameter (e.g. mean or variance) to characterize a
model.

• The probability that a number drawn from the population is above
the median is p=0.5, the probability that it is below is 1-p=0.5.

• The data are drawn from the population independently, so the
number of data that are below the median has a binomial
distribution with N=15 trials and p=0.5



…segue…

• This binomial distribution has 88.2% probability that there are 5 to
10 datapoints below the true median and 96.5% that there are 4 to
11 datapoints below the true median.

• Therefore, the 95% CL interval is: 172.3< median<180.4 (i.e. from the
4th smallest measurement to the 4th largest)



Montecarlo
• 10,000 Montecarlo samples

with N=15 drawn from a
Gaussian distribution with µ=
sample mean and σ2 = the
sample variance (plug-in
principle)

• The empirical PDF is shown on
the right together with a
Gaussian with the same mean
and variance

• The interval corresponding to
the 95% confidence level is

171.3< median<180.9



Bootstrap
• Bootstrap resampling of the 15

measurements

• Does not assume anything
about the population

• PDF is spiky because only one
of the measurements can be
the median

• 95% CL interval:
104 res.   174.1<median<180.4
105 res.   172.3<median<180.4
106 res.   172.3<median<180.4



Jackknife
• Delete-1 jackknife fails!

• Only 15 resamples are possible and 13 of them give exactly the same
value: 175.2. The remaining two give 179.2 and 180.2.

• It can be shown that jackknife estimates of the median are
inconsistent. This happens because the median is not a smooth
statistic (i.e. it can jump when small changes are made to the data)

• More sophisticated versions of the jackknife where groups of d
observations are removed (delete-d jackknife) are better suited for
this application



Summary

• Classic I:   171.3<median<180.9

• Classic II:  172.3<median<180.4

• Montecarlo: 171.3<median<180.9

• Bootstrap:  172.3<median<180.4

• Correct:     171.6<median<180.4



Using the likelihood function
• We can easily build the likelihood

function under the assumption that our
data come from a Gaussian distribution
(see the figure on the left)

• The blue dot indicates the model
parameters that maximize the
likelihood function

• The cross indicates the “population”
parameters from which I generated the
data with a Monte Carlo technique

• Note that the contours progressively
depart from ellipses as you go away
from the peak



The Bayesian way
• Assuming a flat prior in the µ-σ

plane, we can build the posterior
probability (the contours in the
previous figure actually contain
68.3% and 95.4% of the
posterior probability)

• Marginalizing over σ (i.e.
integrating the posterior along σ
at fixed µ), we obtain the
posterior for µ

• The central credibility interval
for µ (at 95% significance) is
then:     171.6<µ<180.4



Confidence vs. credibility intervals
• Confidence intervals (Frequentist): measure the variability due to

sampling from a fixed distribution with the TRUE parameter values.
If I repeat the experiment many times, what is the range within
which 95% of the results will lie?

• Credibility interval (Bayesian): For a given significance level, what is
the range I believe the parameters of a model can assume given the
data we have measured?

• They are profoundly DIFFERENT things even though they are often
confused. Sometimes practitioners tend use the term “confidence
intervals” in all cases and this is ok because they understand what
they mean but this might be confusing for the less experienced
readers of their papers. PAY ATTENTION!



Resampling methods in astronomy
• Image fidelity assessment in radioastronomy

• Significance of point-source (or spectral-line) detection and secular
time variability in gamma-ray astronomy

• Errorbars for the Hubble diagram from supernovae Ia

• Errorbars for estimates of the galaxy luminosity-function and
2-point correlation function

• Loads of minor applications to compute errors in intermediate steps



The pitfalls of bootstrap

Make sure your data are nearly iid before you start resampling them!

Meneux et al. 2009


