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Correlation functions
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96791 2dF galaxies with
redshifts between 0.01 and 0.15

Spectral classification based on
principal component analysis

Power-law fit, ξ(r )=(r0/r)γ

Early-type (passively evolving):
γ=1.95±0.03,
r0=6.10 ±0.34 Mpc/h

Late-type (star-forming):
γ=1.60±0.04,
r0=3.67 ±0.30 Mpc/h

Madgwick et al. (2003)
Different galaxies
cluster differently



Galaxies and DM Halos as Tracers
of the Cosmic Web

Courtesy V. Springel



At the 2-point level,
biasing can be
represented by the
ratio between the
correlation of the
tracers and of the
underlying mass
distribution

ξtt(r)=b2(r) ξmm(r)

For large spatial
separations (r>> 10Mpc),

 b → constant

with a numerical value
which depends on the
mass of the tracers

Pillepich, CP, Hahn 2009





Lauro is desperate! He spent all the conference
money on the social dinner. He now has only one
possibility to keep his job…

The game show has new rules: 12 questions, you can call
a friend 3 times but it must be for three consecutive
questions, you can withdraw any time but if you answer
wrong you loose everything.

Lauro, however, does not know much beyond the
SZ effect and so he will answer at random.

For this reason he asked for help to Alan and
promised to answer what Alan suggests for the 3
questions.
Knowing that Lauro lost after giving a wrong answer
at the 6th question, what can you say about Alan’s
success rate? (the population value…not the sample
one)



Beyond 2-point statistics:
preserving phase information

Coles & Chiang 2000



Primordial non-Gaussianity



The origin of structure
• One of the major

unsolved mysteries in
cosmology

• Many competing
theories that differ in
their predictions some
of which are accessible
to astronomical
observations today



Canonical inflation
• Our universe derives from the

exponential expansion of a tiny
causally connected patch

• The accelerated expansion is
driven by a spatially homogeneous
scalar field (the inflaton) which is
slowly rolling down its potential

• Introduced to address problems
that were eating away at the
foundations of the hot big-bang
model (flatness, horizon, relic
density, expansion)

ϕ

V(ϕ)



Perturbations and inflation
• Small quantum fluctuations of

the inflaton are naturally
produced

• The exponential expansion
rapidly stretches them to
longer and longer wavelengths

• On super-Hubble scales,
fluctuations become
overdamped, leading to
curvature perturbations that
can be described as classical

Courtesy of Prof. Sir M. Berry



Inflationary zoo
R2

new

chaotic

extendedhybrid

natural super-natural extra-natural

eternal

oscillating
ghostbrane

tachyon

D-term

F-term

double

old

multi-field

curvaton scenario

Two scalar fields: one drives the
accelerated expansion (the inflaton) and
the second one is responsible for the
formation of structure with its quantum
fluctuations (the curvaton)

curvaton



Ekpyrotic/cyclic models
• Inspired by heterotic

M-theory

• The collision of 2 parallel branes
embedded in an extradimensional
bulk marks the beginning of the
hot, expanding phase of the
universe

• Prior to the collision the
universe is contracting,
perturbations are generated
during this phase

Khoury et al. 2001, 2002, Steinhardt & Turok 2002



Model predictions

Statistics of
perturbations

Spectrum of
perturbations

 Geometry

Non-GaussianNon-GaussianNearly
Gaussian

Nearly scale-
invariant

Nearly scale-
invariant

Nearly scale-
invariant

FlatFlatFlat

Ekpyrotic
universe

Curvaton
scenario

Canonical
inflation

√ WMAP √ WMAP √ WMAP

√ WMAP √ WMAP √ WMAP



A quote from S.F. Shandarin
Speaking of non-Gaussianity is like speaking of non-dogs!



Spectra and multi-spectra
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Shape of non-Gaussianity

Depending on the properties of the
bispectrum of the gravitational potential,
non-Gaussianity can be broadly classified
into two classes (Babich et al. 2004):

• NG of the local (squeezed) form, where
B(k1, k2, k3) is dominated by the
configurations with k1 « k2 ≈ k3
(curvaton models, Ekpyrotic/cyclic models)

• NG of the equilateral form, where
B(k1, k2, k3) is dominated by the
configurations with k1 ≈ k2 ≈ k3

(ghost inflation, DBI inflation)



A particularly simple model

Fractional non-Gaussian corrections are  ≈ 10-5 fNL

Most of the local models can be reduced to the simple form
(Salopek & Bond 1990; Falk et al. 1993; Gangui et al. 1994):
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Predicted non-Gaussianity

Buchbinder et al. 2007,
Creminelli & Senatore 2007,

Koyama et al. 2007

new ekpyrotic models20-100

>10

≈ 0.01

Arkani-Hamed et al. 2004ghost inflation≈ 100 (equilateral)

Alishahiha et al. 2004DBI inflation≈ 100 (equilateral)

Linde & Mukhanov 1997multi-field inflation≈ 100

Lyth et al. 2003curvaton-5/(4r)

Maldacena 2003
Acquaviva et al. 2003

canonical inflation(ns-1)/4

ReferencesModelfNL



The state of the art

Smith et al. 2009SZ“bispectrum”WMAP 5yr-4<fNL<80

Curto et al. 2008-wavelet
decomposition

WMAP 5yr-8<fNL<111

Komatsu et al. 2008-Minkowski
functionals

WMAP 5yr-178<fNL<64

Jeong & Smoot 2007-1-point PDFWMAP 3yr23<fNL<75

Hikage et al. 2008-Minkowski
functionals

WMAP 3yr-70<fNL<91

Komatsu et al. 2008YW“bispectrum”WMAP 5yr-9<fNL<111

Yadav & Wandelt 2008

Creminelli et al. 2006

Spergel et al. 2007

Creminelli et al. 2006

Komatsu et al. 2003

Reference

YW“bispectrum”WMAP 3yr27<fNL<147

C+“bispectrum”WMAP 3yr-36<fNL<100

KSW“bispectrum”WMAP 3yr-54<fNL<114

C+“bispectrum”WMAP 1yr-27<fNL<121

KSW“bispectrum”WMAP 1yr-58<fNL<134
EstimatorMethodDatafNL (95% CL)



Summary of CMB studies
• Current 95% limits from bispectrum: -9<fNL<111 and  -4<fNL<80

• Most-likely value fNL ≈ 40 - 60

• 7 per cent chance that a Gaussian map gives a higher most-
likely value

• Two studies claim detection of non-Gaussianity at high
confidence

• Topological methods give somewhat different results



The near future: Planck
• The Planck satellite (a new

European CMB probe) is on his
way to the L2 point

• The expected Cramer-Rao limit
is ΔfNL ≈ 5 from temperature
anisotropies (Komatsu &
Spergel 2001)

• This reduces to ΔfNL ≈ 3 from
the joint analysis of
temperature and polarization
maps (Yadav, Komatsu &
Wandelt 2007) Smaller angular scales



Other probes of non-Gaussianity?
• It would be important to cross-

check results against probes
with different systematics

• What about the large-scale
structure? E.g. the galaxy
bispectrum?

• Unfortunately the non-linear
growth of perturbations
superimposes  a much stronger
non-Gaussian signal onto the
primordial one that is then
difficult to recover

(Verde et al. 2000, Scoccimarro et al. 2004, Sefusatti & Komatsu 2007). 



The large-scale structure

fNL = 0                                  fNL = 750

250 h-1 Mpc



Back to life in 2008
• The large-scale bias of

collapsed objects (galaxies,
galaxy clusters) as measured
by the power spectrum has a
strong k-dependence and
scales linearly on fNL!!!

• An approximated model based
on linear theory captures all
the relevant physics (Dalal et
al. 2008, Matarrese & Verde
2008, Slosar et al. 2008, Afshordi
& Tolley 2008, McDonald 2008)

Dalal et al. 2008



How does it work?
• Gaussian case:

long and short
wavelength modes of
the density field are
independent

• Non-Gaussian case:
the long modes
modulate the
amplitude of the
short ones via the
gravitational potential

Afshordi & Tolley 2008

€ 

δs = δG[1+ 2 fNLφl /g(z)]



Competitive with CMB!
• Fitting the best datasets

for galaxy clustering with
the approximated model,
gives:
-29<fNL<70 at 95% CL

• This is competitive with the
WMAP 5yr results!
 Combined: 0<fNL<69

• Caveat: how accurate is the
first-order model?

Slosar et al. 2008



Future prospects

Dalal et al. 2008, Carbone et al. 2008, McDonald 2008, Afshordi & Tolley 2008

q’ ≈ 0.8

Predicted uncertainties for detection (not for measurement)



The large-scale structure

fNL = 0                                  fNL = 750

250 h-1 Mpc



Zooming in

fNL = 0                                  fNL = 750

160 h-1 Mpc



A massive galaxy cluster

fNL = 0                                  fNL = 750

40 h-1 Mpc



fNL from rare events

• Rare events have the advantage that they maximize
deviations from the Gaussian case

• However, they have the obvious disadvantage of being … rare!

• Early attempts of using the cluster mass function to measure
fNL have been inconclusive due to small number statistics but
the future looks promising



Mass function
• A number of groups (Desjacques et

al. 2009, Pillepich et al. 2009, Grossi et
al. 2009) measured the mass
distribution of galaxy clusters
and groups as a function of fNL
in numerical simulations (cf.
analytic approach by Matarrese et al.
2000, Lo Verde et al. 2007, Maggiore &
Riotto 2009, Yam Lam & Sheth 2009)

• The halo mass function
extracted from the simulations
provides a benchmark for future
determinations of fNL with
galaxy-cluster surveys

Pillepich, CP & Hahn 2009



The Wiener filter

Norbert Wiener
1894-1964



The grand challenge
• d=s+n

• s is a Gaussian variable with zero mean and known variance σ2
s

• n is a Gaussian variable with zero mean and known variance σ2
n

• You measure d, what is your best Bayesian point estimate for s?

• What is the posterior PDF for s?



Solution
• We know that noise is Gaussian, then

• We know that the signal is Gaussian, then we can use the prior

• We finally write down Bayes theorem and compute the mean value
of s over the posterior, finding
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Wiener filter
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d = Hs + n
Power spectrum of the signal is known
Power spectrum of the noise is known
Point− spread function is known
Then, the optimal linear filter (minimum mean − square error) is
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Example: Lenina

Original             Blurred
1-D Gaussian smoothing along x axis 



Example

FT of blurred image
Where is the distortion?

         Reconstructed
               Inverse filter



Example

Blurred + noise added                FT



Example

    Reconstructed
        Inverse filter

   Reconstructed
   Pseudo-inverse filter



Example

    Reconstructed
        Wiener filter

 FT of Wiener filter



Wiener filtering



Wiener filtering

       Noisy                   Wiener filtered       Median (3x3) filtered



Wiener filter in astronomy
• Astronomical images: clean up

• CMB: each pixel contains a
measurement of the beam-
smoothed temperature plus
noise

• LSS: to reconstruct the
cosmic density field from the
galaxy distribution

Starck et al. 2006



Lauro is desperate! He spent all the conference
money on the social dinner. He now has only one
possibility to keep his job…

The game show has new rules: 12 questions, you can call
a friend 3 times but it must be for three consecutive
questions, you can withdraw any time but if you answer
wrong you loose everything.

Lauro, however, does not know much beyond the
SZ effect and so he will answer at random.

For this reason he asked for help to Alan and
promised to answer what Alan suggests for the 3
questions.
Knowing that Lauro lost after giving a wrong answer
at the 6th question, what can you say about Alan’s
success rate? (the population value…not the sample
one)



Solution
• AAALLL
• LAAALL
• LLAAAL
• LLLAAA
• LLLLAA
• LLLLLA
• LLLLLL
• All possibilities are equally likely
• Likelihood:
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Solution
• Maximum likelihood: p=1
• Assume flat prior (unless you

already know something about
Alan’s success rate)

• Mean posterior: p≈0.72
• Median posterior: p≈0.77
• Note that the likelihood is not

peaked, it is then difficult to
give a credibility interval.
Best, 1-tailed CI: p>0.26 at
95% significance

• Prob(p>0.25)≈0.953
• The likelihood function

(multiplied by a prior) contains
all the information


