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Decision Time

Science is decision. 

A list of what it is not science is infinite (and arguable):
• Building instruments
• Observing 
• Reducing data
• Making pretty graphs 
• Writing code
• Writing papers
• Reading the literature 
• Learning tools: physics/astronomy/maths

Only decision counts. 
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We decide by comparing
Example: Is the faint smudge on an image a star or a galaxy?
• Measure FWHM of the point-spread function.
• Measure full-width-half-maximum, the FWHM of the image.
• The data set, the image of the object, is now represented by a statistic

► Decision!

Statistics are there for decision against a background.

Every measurement, parameter or value we derive requires an error 
estimate, a measure of range (expressed in terms of probability) that 
encompasses our belief of the true value of the parameter. 

No measured quantity or property is of the slightest use in decision 
unless it has a `range quantity' attached.
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A statistic is a quantity that summarizes data; it is the ultimate data-
reduction. 

It is a property of the data and nothing else. It may be a number, a 
mean for example, but it doesn't have to be. 

It is a basis for using the data or experimental result to make a
decision. 

We need to know how to treat data with a view to decision,
to obtain the right statistics to use in drawing statistical inference. 

It is the latter which is the branch of science; at times the term is loosely 
used to describe both the descriptive values and the science.

What is or are statistics? Why?
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How to decide
The essence of classical statistical analysis is 

(iii)the formulation of hypothesis, 
(iv)the gathering of hypothesis-test data via experiment, 
construction of a test-statistic. 
(iii) comparison with the sampling distribution.

But we can’t `rerun our experiments‘.
Thus we don’t know the underlying distributions of the variables:

•  Small samples

•  Poor experimental control

 ► W e have to be smarter than this
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Probability:Distributions:Statistics:Inference

Statistics are combinations of Data – and Nothing Else 

Example: average
 - we expect it bears some relation to the true mean
 - we calculate the sampling distribution  ≡  the probability of various values 
       it may assume if we (hypothetically) repeat the experiment many times.
 - we then know the probability that some range around our single 
       measurement will contain the true mean.

This is precisely the utility of statistics: they are laboriously-
discovered combinations of observations which converge,
for large sample sizes, to some underlying parameter we want to know.
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A radically different way of making inferences focuses on the 
probabilities immediately, and to hell with statistics  

Invert the reasoning just described:  The data are unique and known!

Example: in the previous example it is the mean that is unknown, that 
should have probability attached to it. We instead calculate the 
probability of various values of the mean, given the data we have.  

The approach comes far closer to answering the questions that we 
actually ask. Of course it allows us to make decisions.  

Probability:Distributions:Statistics:Inference 3
the B ayes ian w ay

S o w e s hould a lways  us e it, exc ept for the buts :
  
  but #1 -  the brain works the other way
  but #2 - other people work the other way, and we’ve gotta check them out
  but #3 - the data may not  be given to us in a form we can Bayesiate it
  but #4 - there may not be a model
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Probability is essential for us
(1) Astronomical measurements are subject to random measurement 
error and we need to have a common language of expression. If we 
quote an error, what is the unspoken assumption about it?

(2) The inability to do experiments on our subject matter leads us 
to draw conclusions by contrasting properties of controlled
samples. They are usually ‘too small’, leading to ‘statistical error’.

Example: `the distributions of luminosity in X-ray-selected Type I 
and Type II objects differ at the 95 per cent level of significance.' 
 
Very often the strength of this conclusion is: 
 - dominated by the number of objects in the sample
 - unaffected by observational error.

So: probability + conditionality + independence + Bayes’ Theorem +
prior + posterior probabilities.
=> probability distributions
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…and there are several reasons for this unfortunate 
   situation:

5.Error (range) assignment - ours, and theirs – what do 
  they mean?

2. How can data be used best? Or at all?

3. Correlation, testing the hypothesis, model fitting; 
   how do we proceed?

4. Incomplete samples, samples from an experiment which 
   cannot be rerun, upper limits; how can we use these 
   to best advantage?

5. Others describe their data and conclusions in 
   statistical terms. We need some self-defense.

6. Above all, we must decide. The decision process cannot 
   be done without some methodology, no matter how good 
   the experiment.

We (still) cannot avoid statistics….
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Probability:Distributions:Statistics:Inference 2

‘Probability’ is crucial in the decision process

We have a built-in sense of probability 
• from distributions or frequencies, which we ‘know’
• from experience
• from data

Consider the eye-brain system observing an approaching person …..
  …..It carries out a complete scientific experiment and makes a decision 



  12

 Example: toss four `fair' coins. The probability of no heads is (1/2)4; of one head 
4 x (1/2)4; of two heads 6 x (1/2)4, etc. The sum of the possibilities for getting 
0 heads to 4 heads is readily seen to be 1.0. If x is the number of heads (0,1,2,3,4), 
we have a set of probabilities prob(x) = (1/16,1/4,3/8,1/4,1/16); we have a
probability distribution, describing the expectation of occurrence of event x. This 
probability distribution is discrete; there is a discrete set of outcomes and so a
discrete set of probabilities for those outcomes.

- a mapping between the outcomes of the experiment and a set of integers.  
- sometimes the set of outcomes maps onto real numbers instead; here we 
discretize the range of real numbers into little ranges within which we assume the 
probability does not change. 
- If x is the real number that indexes outcomes, we associate with it a probability 
density f(x); the probability that we will get a number `near’ x, say within a tiny range 
δx, is prob(x) δx.  
- loosely refer to ‘probability distributions' with discrete outcomes or not.

Probability Distributions
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Formally: if x is a continuous random variable, then f(x) is its probability 
density function, commonly termed probability distribution, when

1. Probability 

2.                              , and

3.  f(x) is a single-valued non-negative number for all real x.

The corresponding cumulative distribution function is

Probability distributions and distribution functions may be similarly defined for 
sets of discrete values of x.

Distributions may be multivariate, functions of more than one variable.

Probability Distributions      2
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Probability Distributions    3

Quantifiers    -  location (where is the `centre'?) 
                       - dispersion (what is the `spread'?)

These quantifiers can be given by the first two moments of the distributions:

Other moments, particularly the third moment (‘skewness’) can play a 
prominent role; but these two are far the most important.

There are probability distributions we can calculate resulting from ideal 
experiments, outcomes or combinations of these. 

The best-known are the UNIFORM, BINOMIAL, POISSON and GAUSSIAN
(or NORMAL) distributions, and these have a bunch of hangers-on.
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The Binomial Distribution
There are two outcomes - `success' or `failure'. This common distribution gives the 
chance of n successes in N trials, with the probability of a success at each trial ρ,
and successive trials are independent. This probability is

The leading term, the combinatorial coefficient, gives the 
number of distinct ways of choosing n items out of N:

This coefficient can be derived in the following way. There are N! equivalent ways 
of arranging the N trials.  However there are n! permutations of the successes, 
and (N-n)! permutations of the failures, which correspond to the same result – 
namely, exactly n successes, arrangement unspecified. Since we require not just n
successes (probability ρn) but exactly n successes, we need exactly N-n failures, 
probability (1- ρ)(N-n) as well.  The binomial distribution follows from this argument.
The binomial distribution has a mean value given by

and a variance or mean square value of

Bernoulli, Johann, 1667-1748
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The Binomial Distribution – an Example

In a sample of 100 galaxy clusters selected by automatic techniques,10 contain
a dominant central galaxy. We plan to check a different sample of 30 clusters, now 
selected by X-ray emission.  How many of these clusters do we expect to have a 
dominant central galaxy?

If we assume that the 10 per cent probability holds for the X-ray sample, then the 
chance of getting n dominant central galaxies is

For example, the chance of getting 10 is about 1%; if we found this many we would 
be suspicious that the X-ray cluster population differed from the general population.
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The Poisson Distribution
The Poisson distribution derives from the binomial in the limiting case of very rare 
events and a large number of trials, so that although ρ → 0, N ρ → (a finite value). 
Calling this finite mean value μ, the Poisson distribution is

The variance of the Poisson distribution is also μ.

Poisson, Siméon-Denis, 1781-1840

Example : Village blacksmiths are/were
occasionally kicked by the horse they were 
shoeing, say on average, 3 times per year.
How often would they have good years with
no kicks? How often would they have bad 
years, say 10 kicks? 
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The Poisson Distribution - Example

A familiar example of a process obeying Poisson statistics is the number of photons 
arriving during an integration. The probability of a photon arriving in a fixed interval
of time is (often) small. The arrivals of successive photons are independent.  
Thus the conditions necessary for the Poisson distribution are met. 

Hence, if the integration over time t of photons arriving at a rate λ has a mean of 
μ =  λt photons, then the fluctuation on this number will be σ = √ μ. 
(In practice we usually only know the number of photons in a single exposure, 
rather than the mean number; obviously we can then only estimate the μ.)

For photon-limited observations, such as CCD images or spectra, 

If we ``integrate" more,

Thus Signal/Noise ي  √t, the sky-limited case.
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Poisson Example, continued
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The Gaussian (Normal) Distribution
Both the Binomial and the Poisson distributions tend to the Gaussian distribution, 
large N in the case of the Binomial, large μ in the case of the Poisson. 
The (univariate) Gaussian (Normal) distribution is

from which it is easy to show that the mean is μ and the variance is σ2.  

For the binomial when the sample size is very large, the discrete distribution tends 
to a continuous probability density

in which the mean μ = N p and variance σ2 = N p (1-p) are still given by the parent 
formulae for the binomial distribution. 

Here is an instance of the discrete changing to the continuous distribution: 
in this approximation we can treat n as a continuous variable (because n changes 
by one unit at a time, being an integer => the fractional change 1/n is small).
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The Gaussian distribution 2
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The Central Limit Theorem
The true importance of the Gaussian distribution and its dominant position in 
experimental science, stems from the Central Limit Theorem. A non-rigorous 
statement of this is as follows.

TH IS  M AY  B E  TH E  M OS T R E M AR K AB LE  THE OR E M  EV ER
 
• It says that averaging will produce a Gaussian distribution of results -
    no matter the shape of distribution from which the sample is drawn.
 
• Eyeball integration counts!

• Errors on averaged samples will always look `Gaussian'.
  
• The Central Limit Theorem shapes our entire view of experimentation.
      => error language of sigmas, describing tails of Gaussian distributions.
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The Central Limit Theorem – Example 1
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The Central Limit Theorem – Example 2
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Gaussian tails
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End Bertinoro 1


