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Correlation and PCA
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Correlation – why do we try it?

When we make a set of measurements, it is instinct to try to correlate 
the observations with other results. We might wish 

(1) to check that other observers' measurements are reasonable, 

(2) to check that our measurements are reasonable, 

(3) to test a hypothesis, perhaps one for which the observations 
were explicitly made,

(4) in the absence of any hypothesis, any knowledge, or anything 
better to do with the data, to find if they are correlated with other 
results in the hope of discovering some New and Universal Truth.

We are gonna do it – and we are going to fall into some deadly 
traps. We already have.
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The fishing trip
Suppose that we have plotted something against something, on a Fishing Expedition.

Does the eye see much correlation? If not, formal testing for correlation is probably 
a waste of time.

Could the apparent correlation be due to selection effects? Consider for instance the 
beautiful correlation obtained by Sandage (1972): 3CR radio luminosities vs distance.

Radio luminosities of 3CR radio sources versus distance modulus. 
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The plot proves luminosity evolution for radio sources? Are the more distant objects 
(at earlier epochs) clearly not the more powerful? 

No! The sample is flux- (or apparent intensity) limited; the solid line shows the 
flux-density limit of the 3CR catalogue. The lower right-hand region can never be 
populated.

But the upper left? Provided that the luminosity function (the true space density in 
objects per Mpc3) slopes downward with increasing luminosity, the objects are 
bound to crowd towards the line. The only conclusion from the diagram!

Astronomers produce many plots of this type, and say things like terms like 
‘The lower right-hand region of the diagram is unpopulated because of the detection 
limit, but there is no reason why objects in the upper left-hand region should have 
escaped detection....’  

Nonsense – probabilities rule! There are only low-luminosity sources to be seen
at low redshifts because there’s not enough volume to pick up the high-fliers.

This applies to any proposed correlation for variables with steep 
probability functions dependent upon one of the variables plotted.

Still on the fishing trip…
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Still fishing….

 If we are happy, we can try formal calculation of the significance of the 
correlation. But, if there is a correlation, does the regression line (the fit) make 
sense?

If we are still happy - is the formal result is realistic? 
Wall's rule of thumb: if 10 percent of the points are grouped by themselves 
so that covering them with the thumb destroys the correlation to the eye, then 
we should doubt it. Selection  effects, data errors, or some other form of 
statistical conspiracy?

Dodgy correlations: in each case formal calculation will indicate that a 
correlation exists to a high degree of significance.
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¤ The price of fish in Billingsgate Market and the size of feet in China.

¤ Number of violent crimes in cities versus number of churches.

¤ The quality of student handwriting versus their height.

¤ Stock market prices and the sunspot cycle.

¤ In World War II,  bombing accuracy was far greater when enemy 
fighter planes were present. 

¤ Cigarette smoking versus lung cancer.

¤ Health versus alcohol intake.

1. Lurking third variables

2. Similar time scales

3. Causal connection

The fishing trip continues…
 If still confident, remember that 
a correlation does not prove a causal connection.  Examples:

There are ways of searching for intrinsic correlation between variables when 
they are known to depend mutually upon a third variable. But ‘known’?????
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The fishing trip ends – big fish are out there
Don’t get too discouraged by all the foregoing. Consider the example figure, a 
ragged correlation if ever there was one, although there are no nasty  groupings of 
the type rejected by the Rule of Thumb. 

An early Hubble diagram (Hubble 1936); recession velocities of a sample of 
24 galaxies versus distance measure.
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We have a set of measurements (Xi, Yi) and we ask (formally) if they are related to 
each other. What does ‘related’ mean? In general we model our data as a bivariate 
or joint Gaussian of correlation coefficient ρ:

Correlation: standard model

This model is so well developed that ‘correlation’ 
and ‘ρ ≠ 0’ are nearly synonymous;  if ρ → 0 there is 
little correlation, while if ρ → 1 the correlation is 
perfect.

Left: linear contours of the bGpd. Near circular: 
ρ = 0.01, little connection between x and y; 
highly elliptical: ρ = 0.99, strong correlation 
between x and y. Negative values of ρ reverse 
the tilt: ‘anticorrelation’.
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Correlation: standard model, continued
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Formal testing – what are we doing?

1. For bivariate data, what we really want to know is whether or not ρ = 0.

2. Using the bivariate Gaussian is a very specific model. 

3. A Gaussian is assumed - it allows only two variances, and assumes that both 
x and y are random variables. 

4. σx and σy include both the errors in the data, and their intrinsic scatter -- all 
presumed Gaussian.   

5. Does not apply, for example, to data where the x-values are well-defined and 
there are ‘errors’ only in y, perhaps different at different x.  In such cases we 
would use model-fitting, perhaps of a straight line. This is a different issue –
This is model-fitting, or parameter-estimation. 

CAUTION! Are your data right for this testing process?
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Correlation testing - comments
• The non-parametric tests circumvent some of the issues involved in the 
non-Bayesian approach, but they have no bearing on the fundamental issue – 
what was the real question? 

2. But as ever, the Bayesian approach, strong in answering the real question, forces
reliance on a model.

3. In practice there is little difference between the Fisher test and results from 
Jeffreys distribution.  We can show this with some random Gaussian data with a 
correlation of zero. In the standard way, we can use the r-distribution to find the
probability of r being as large, or larger, than we observe, on the hypothesis that 
ρ=0. If this probability is small, the test is hinting at the possibility that the 
correlation is actually positive. Therefore we compare with the probability, from
the Jeffreys distribution, that ρ is positive.  If the probability from Fisher's 
r-distribution is small we expect the probability from ρ to be large; and in fact we 
can see, either from simulations or from the algebraic form of the distributions, that 
the sum of  these two probabilities is always → 1.  

Interpreting the standard Fisher test (illegally!) to be telling us the chance that ρ is
positive, actually works very well!
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First question: what’s the law relating the variables?

We rush off and fit ‘regression lines’, often by Least Squares.

But recognize that we’re now model-fitting. There is a crucial distinction.

In the model fitting (coming later) :
 - Are there better quantities to minimize than the squares of deviations? 
 - What errors result on the regression-line parameters? 
 - Why should the relation be linear? 
 -  What are we trying to find out? 

Example: If we have found a correlation between x and y, which variable is 
dependent; do we want to know (x on y) or (y on x)?  The coefficients are 
generally completely different.

As an argument against blind application of correlation testing, consider the
example of Anscombe’s (1973) famous quartet:

Correlation found! Now what?
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Anscombe’s quartet: correlation vs independence

Anscombe’s quartet: 4 fictitious sets of 11 (Xi,Yi), each with the same <X>, <Y>,
identical coefficients of correlation, regression lines, residuals in Y, estimated
standard errors on slope, and covariance matrices.

1. In ¾ cases, the points are clearly related; they are far from independent but still show
only indifferent quality of correlation. At upper right, choice of the ‘right’ relation would 
result in a perfect fit.
2. X independent of Y means prob(X,Y)=prob(X)prob(Y), or prob (X|Y)=prob(X). 
X correlated with Y means prob(X,Y) ≠ prob(X)prob(Y) in a way such as to give r ≠ 0.
We can have prob(X,Y) ≠ prob(X)prob(Y) AND  r = 0, example: Union Jack.
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Principal Component Analysis (PCA)
PCA is the ultimate correlation searcher when many variables are present.
 
Given a sample of N objects with n parameters measured for each, what is 
correlated with what? 

What variables produce primary correlations, and what produce secondary, via the 
lurking third (or indeed n-2) variables?

PCA is one of a family of algorithms (known as multivariate statistics)  designed for 
this situation. Its task: given a sample of N objects with n measured variables xn, 
find a new set of ξn variables that are orthogonal (independent), each one a
linear combination of the original variables:

with values of aij such that the smallest number of new variables account for as 
much of the variance as possible. The ξi are the principal components. 
If most of the variance involves just a few of the n new variables, we have found 
a simplified description of the data. 

Finding which of the variables correlate (and how) may lead to success on our 
fishing  expedition - we may have caught new physical insight.
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• Geometric approach: Back to the early Hubble diagram, 24 galaxies with two 
measured variables, recession velocity v and distance d. Procedure:
 - Normalize by subtracting the means from each variable and divide by the std dev, 
i.e. plot vi’ = (vi - <v>) / σv vs  di' = (di - <v>) / σd                     

 - Find the first principal component by rotating the axis through the origin to align 
       with max elongation, the direction of apparent correlation, using least-squares.
 - Maximizing the variance along PC1 is equivalent to minimizing the sums of the 
       squares of the distances of the points from this line through the origin. 
 - The distance of a point from the direction PC1 (dotted verticals) represents the 
      value (score) of PC1 for that point. 
 - PC1 is clearly a linear combination of the two original variables; in fact it is v' = d'. 
 - Because the new coordinate system was found by simple rotation, distances 
      from origin are unchanged; the total variance of v' and d' remains 2.0. 
 

PCA – Example 1
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- The variance of PC1, the normalized distances squared from PC2, is 1.837. 
- The remaining variance of the sample must be accounted for by the projection of 
      data points onto the axis PC1, perpendicular to PC2; lengths of these are scores of
      the second principal component PC2, and this is verified as 0.163; sum = 2.0.

The table sets out the the results in the standard 
way of PCA.

2. The matrix approach. Procedure:
 - Construct the error matrix. i.e.  for the two-variable 
      case of the example, a(1,1) = Σd'2, a(2,2) = Σv'2 ,
      a(1,2) = a(2,1) = Σv'd’.
.- Seek a principal axis transformation that makes the 
      cross-terms vanish, an axis transformation to rotate the ellipses of our BVGD so 
      that the axes of the ellipses coincide with the principal axes of the coordinate system. 
 - Simple in matrix notation! We determine the eigenvalues of the error matrix and form 
      its eigenvectors (for the example, v' = d' and v' = -d' as seen in the Hubble fig.)
 -  Use these eigenvectors to form the transpose matrix T, for variable transformation 
      and axis rotation. The axis rotation diagonalizes the matrix, i.e. in the new  axis 
      system, the cross terms are zero; we have rotated the axes until there is 
      no (v’,d’) covariance.
 

PCA – Example 1 continued
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 - Our set of data has been reduced from 48 numbers for the 24 galaxies to 4 numbers, 
    a  2 x 2 matrix. How?  PCA assumes that the covariance (error) matrix describes 
   the data

 - This is the case if data drawn from a multivariate Gaussian  or in general when a simple 
   quadratic form, using the covariance matrix, can describe the distribution of the data. 

 - Far from generally true that the clouds of points in most n-variate hyperspaces will be 
   so simply distributed.

 - In multivariate data sets, the disparate units are taken care of by normalizing: subtracting 
   mean values and dividing by variances. 

 - This is not a prescription. The variance for any particular variable might be dominated 
    by an outlier which there are good grounds to reject. 

 - The choice of weights does therefore depend on familiarity with the data and preferences – 
    there is plenty of room for subjectivity. 

 - PCA is a linear analysis and tests need to be performed on the linearity of the 
   principal components. For example, plotting the scores of PC1 vs PC2 should show a 
    Gaussian distribution consistent with ρ = 0. 

 - It may be apparent how to reject outliers or to transform coordinates to reduce 
   the problem to a linear analysis. In large datasets such processes can reveal unusual objects.

PCA notes
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PCA – Example 2
The Francis and Wills sample of QSOs, 1999
                   log             logFWHM    FeII/    logEW  logFWHM logEW logEW CIV/    logEW   SiIII/        NV/        λ1400/
PG name    L1216               αx       Hβ     Hβ      [OIII]       CIII]       Lyα      CIV     Lyα     CIII]     CIII]      Lyα         Lyα 

0947+396   45.66  1.51   3.684  0.23  1.18  3.520  2.08   1.78  0.45  1.24  0.306  0.179  0.143
0953+414   45.83  1.57   3.496  0.25  1.26  3.432 2.19    1.78  0.40  1.24  0.164  0.189  0.093
1114+445   44.99  0.88   3.660  0.20  1.23  3.654 2.27    1.85  0.42  1.48  0.222  0.175  0.092
1115+407   45.41  1.89   3.236  0.54  0.78  3.403 1.90    1.51  0.33  1.14  0.385  0.228  0.134
1116+215   46.00  1.73   3.465  0.47  1.00  3.446 2.14    1.71  0.34  1.20  0.440  0.254  0.126
1202+281   44.77  1.22   3.703  0.29  1.56  3.434 2.72    2.41  0.69  1.87  0.164  0.154  0.098
1216+069   46.03  1.36   3.715  0.20  1.00  3.514 2.12    1.95  0.54  1.20  0.037  0.121  0.056
1226+023   46.74  0.94   3.547  0.57  0.70  3.477 1.64    1.44  0.45  1.00  0.280  0.174  0.018
1309+355   45.55  1.51   3.468  0.28  1.28  3.406 2.01    1.68  0.41  1.15  0.303  0.131  0.064
1322+659   45.42  1.69   3.446  0.59  0.90  3.351 2.19    1.85  0.41  1.30  0.291  0.135  0.097
1352+183   45.34  1.52   3.556  0.46  1.00  3.548 2.14    1.80  0.41  1.29  0.357  0.203  0.116
1402+261   45.74  1.93   3.281  1.23  0.30  3.229 1.91    1.59  0.39  1.09  0.568  0.227  0.161
1415+451   45.08  1.74   3.418  1.25  0.30  3.434 2.32    1.78  0.29  1.40  0.688  0.210  0.142
1427+480   45.54  1.41   3.405  0.36  1.76  3.300 2.03    1.82  0.49  1.21  0.265  0.126  0.117
1440+356   45.23  2.08   3.161  1.19  1.00  3.192 2.14    1.54  0.21  1.05  0.747  0.141  0.092
1444+407   45.92  1.91   3.394  1.45  0.30  3.479 1.99    1.34  0.21  1.06  0.809  0.335  0.164
1512+370   46.04  1.21   3.833  0.16  1.76  3.546 2.02    2.05  0.75  1.28  0.228  0.182  0.050
1626+554   45.48  1.94   3.652  0.32  0.95  3.631 2.14    1.80  0.39  1.36  0.197  0.217  0.118
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(1) – subtract mean and divide by variance:     

      qso\data:   1      2        3          4       5        6          7      8        9        10        11       12       13
        1           0.14 -0.14   1.014  -0.80  0.39  0.636  -0.13  0.09  0.215 -0.069 -0.252 -0.170  1.005
        2           0.52  0.04  -0.061  -0.75  0.57 -0.103   0.39  0.09 -0.157 -0.069 -0.934  0.022 -0.300
        3          -1.35 -2.03   0.877  -0.88  0.50  1.760   0.77  0.38 -0.008  1.175 -0.655 -0.246 -0.326
        4          -0.42  0.99  -1.548  -0.04 -0.55 -0.346  -0.99 -1.06 -0.678 -0.588  0.128  0.771  0.770
        5           0.89  0.51  -0.238  -0.21 -0.03  0.015   0.15 -0.21 -0.604 -0.276  0.392  1.270  0.561
        6          -1.84 -1.01   1.123  -0.66  1.27 -0.086   2.90  2.77  2.001  3.197 -0.934 -0.649 -0.170
        7           0.96 -0.59   1.192  -0.88 -0.03  0.585   0.06  0.81  0.885 -0.276 -1.544 -1.283 -1.266
        8           2.54 -1.85   0.231   0.03 -0.73  0.275  -2.22 -1.36  0.215 -1.313 -0.377 -0.265 -2.258
        9          -0.11 -0.14  -0.221  -0.68  0.62 -0.321  -0.47 -0.34 -0.083 -0.536 -0.266 -1.091 -1.057
       10         -0.40  0.40  -0.347   0.08 -0.27 -0.782   0.39  0.38 -0.083  0.242 -0.324 -1.014 -0.196
       11         -0.57 -0.11   0.282  -0.24 -0.03  0.870   0.15  0.17 -0.083  0.190 -0.007  0.291  0.300
       12          0.31  1.11  -1.291   1.64 -1.66 -1.805  -0.94 -0.72 -0.232 -0.847  1.007  0.752  1.475
       13         -1.15  0.54  -0.507   1.69 -1.66 -0.086   1.00  0.09 -0.976  0.760  1.584  0.425  0.979
       14         -0.13 -0.44  -0.582  -0.48  1.74 -1.210  -0.37  0.26  0.513 -0.225 -0.449 -1.187  0.326
       15         -0.82  1.56  -1.977   1.55 -0.03 -2.116   0.15 -0.94 -1.571 -1.054  1.867 -0.899 -0.326
       16          0.72  1.05  -0.644   2.18 -1.66  0.292  -0.56 -1.79 -1.571 -1.002  2.165  2.824  1.553
       17          0.98 -1.04   1.867  -0.97  1.74  0.854  -0.42  1.23  2.448  0.138 -0.626 -0.112 -1.423
       18         -0.26  1.14   0.831  -0.58 -0.15  1.567   0.15  0.17 -0.232  0.553 -0.775  0.560  0.352

PCA – Francis & Wills, continued (2)
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PCA – Francis and Wills, continued (3)
This process of `data adjustment', weighting, 
normalizing, is critical to the outcome, in 
particular to whether we understand the 
significance of the results, and whether the 
error/covariance matrix really does the job we 
expect of it. There are many ways of doing this: 
we can take logs of the data, we can weight by 
factors other than standard deviations based on 
prior knowledge, etc. 

What about the present weighting system? The 
figure plots the run of the 18 points, one from 
each QSO, for each of the 13 data, i.e. 13 mini-
plots.

Looks OK! All the points are there; there's only 
one deviation >3σ in 234 points, not far off 
expectation for Gaussian stats, and the 
distributions look reasonable. We may be 
confident that the results will be understandable.
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PCA – Francis and Wills continued (4)
(2) Construct the covariance or error matrix. This is a  13 x 13 symmetric matrix:

 1.0000 -0.1530  0.1135 -0.0414 -0.1420  0.0627 -0.7656 -0.4387  0.0620 -0.6803 -0.0962  0.1764 -0.3794
 -0.1530  1.0000 -0.6775  0.6117 -0.5009 -0.4853 -0.0647 -0.4348 -0.6603 -0.3460  0.6255  0.4159  0.6514
  0.1135 -0.6775  1.0000 -0.7000  0.5029  0.7748  0.2860  0.6694  0.7656  0.5151 -0.7008 -0.2118 -0.4287
 -0.0414  0.6117 -0.7000  1.0000 -0.7829 -0.5204 -0.1602 -0.5852 -0.6826 -0.3701  0.9295  0.5139  0.5182
 -0.1420 -0.5009  0.5029 -0.7829  1.0000  0.1549  0.3013  0.6476  0.6979  0.3944 -0.6505 -0.5894 -0.4519
  0.0627 -0.4853  0.7748 -0.5204  0.1549  1.0000  0.1207  0.2595  0.2923  0.3465 -0.4627  0.1881 -0.1898
 -0.7656 -0.0647  0.2860 -0.1602  0.3013  0.1207  1.0000  0.7653  0.2489  0.8897 -0.1574 -0.1864  0.1630
 -0.4387 -0.4348  0.6694 -0.5852  0.6476  0.2595  0.7653  1.0000  0.7925  0.8609 -0.6196 -0.4830 -0.2307
  0.0620 -0.6603  0.7656 -0.6826  0.6979  0.2923  0.2489  0.7925  1.0000  0.5117 -0.7328 -0.4608 -0.5046
 -0.6803 -0.3460  0.5151 -0.3701  0.3944  0.3465  0.8897  0.8609  0.5117  1.0000 -0.3930 -0.2054  0.0287
 -0.0962  0.6255 -0.7008  0.9295 -0.6505 -0.4627 -0.1574 -0.6196 -0.7328 -0.3930  1.0000  0.5622  0.5626
  0.1764  0.4159 -0.2118  0.5139 -0.5894  0.1881 -0.1864 -0.4830 -0.4608 -0.2054  0.5622  1.0000  0.6198
 -0.3794  0.6514 -0.4287  0.5182 -0.4519 -0.1898  0.1630 -0.2307 -0.5046  0.0287  0.5626  0.6198  1.0000

Here it is – nb diagonal elements are all 1.0, as they must be.
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PCA – Francis and Wills continued (5)
(3) Solve 13 - 13th order equations in 13 unknowns to get the eigenvalues of this matrix! 
This is 150-year old technology; for symmetric matrices, {\it Jacobi rotations} do the trick, 
each plane rotation or transformation designed to get rid of one off-diagonal matrix 
 element. ``absolutely foolproof for all real symmetric matrices" – NumRec.  The NumRec 
routine  jacobi, when supplied with the covariance matrix, returns the eigenvalues, the 
array of eigenvectors, and the number of rotations required, which turns out to be 
about  3x132 = 500. The cpu time required is insignificant. My results:
Rotations: 459
Eigenvalues: 6.451  2.820  1.589  0.624  0.565  0.343  0.261 0.172 0.122 0.023  0.019  0.010  0.002
Eigenvectors:
   PC1    PC2    PC3    PC4     PC5     PC6     PC7    PC8     PC9    PC10   PC11   PC12   PC13
 -0.055  0.534   0.126 -0.018   0.408  0.193  -0.128 -0.322  -0.418  0.075   0.250   0.280  -0.226
 -0.294 -0.197 -0.082   0.490   0.151  0.511  -0.456  0.146   0.282  0.090   0.147  -0.018  -0.071
  0.330  0.077   0.357 -0.081   0.149  0.133  -0.213  0.422  -0.296   0.111   0.150  -0.480  0.366
 -0.342 -0.139  -0.006 -0.484   0.222 -0.001 -0.074   0.184   0.013   0.656 -0.297   0.146   0.015
  0.310  0.016  -0.252  0.396    0.093 -0.619 -0.389  -0.017 -0.064   0.352  -0.019   0.105  0.018
  0.198  0.075   0.624   0.044  -0.399  0.007 -0.183   0.234   0.132  0.064  -0.129   0.394  -0.351
  0.177 -0.503   0.005  -0.138  -0.026  0.127 -0.312  -0.352 -0.396  -0.101 -0.283  -0.242  -0.391
  0.336 -0.262  -0.051  -0.046   0.302  0.196 -0.049   0.046 -0.041  -0.276  -0.214   0.601  0.441
  0.342  0.064  -0.031  -0.067   0.581 -0.034   0.180  0.215   0.411 -0.112  -0.128  -0.171 -0.479
  0.261 -0.414   0.124  -0.177   0.012  0.016   0.146 -0.257   0.203  0.294   0.698   0.101  -0.016
 -0.342 -0.149   0.015  -0.310   0.125 -0.399 -0.362   0.301 -0.056  -0.469  0.348   0.106  -0.113
 -0.231 -0.053   0.571   0.112   0.288 -0.258 -0.088  -0.465  0.291  -0.083 -0.190  -0.159   0.279
 -0.223 -0.351   0.225   0.441   0.207 -0.136   0.499  0.251  -0.424  0.054   0.019   0.087  -0.135
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PCA – Francis and Wills (6)
The Francis-Wills results table:

Columns (2)-(6) show the first 5 out of a total of
      13 principal components. The first row gives the
      variances (eigenvalues) of  the data along the
       direction of the corresponding principal component. 
 The sums of all the variances add up to the sums 
      of the variances of the input variables, in this
      case, 13. 
By convention, the principal components are given 
      in order of their contribution to the total variance. 
      This is given as ‘Proportion' in the second line, 
       and  the ‘Cumulative proportion’ on the third line. 
 Thus, among the parameters used, the first principal component contributes 50% of the 
      spectrum-to-spectrum variance, the second 22%, the third, 12%.The first two principal 
      components together contribute 71% of the variance, the first 3, 84%, the first 4, 

nearly 90%.
The columns of numbers for each principal component represent the weights 

assigned to  each input variable. Thus PC1 = 0.053x1 + 0.295x2 - 0.330x3…, where 
x1, x2, x3 are the values of the normalized variables corresponding to log L1216, αx, 
FWHM Hβ, etc. By  convention these weights are chosen so that the sum of their 
squares = 1. This arbitrariy fixes the scale of the new variable. The sign of the new 
variable is arbitrary as well. 
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(4) Check it out. One simple check of this step: the eigenvalues must add up to the 
trace of the array, the sum of the diagonal elements, =13 here.
For eigenvalues to be significant, they must be greater than 1.0. How to test this?
(a) Remove any variable, and recompute, to assess how much it contributes to any 
      particular eigenvalue.

(b) Find the errors (uncertainties) on the eigenvalues. Bootstrap is perfect for this –
      see the right figure, 10000 trials. The widths of the distributions are reflected in 
      the error bars in the left figure. 

Eigenvalues 1, 2 and maybe 3 are significant. The rest – garbage. 

PCA – Francis and Wills continued (7)
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PCA – Francis and Wills concluded
“The first principal component is elongated with 
variance about 6.5 times that of any individual 
measurements, and accounts for about half the total 
variance. This is therefore likely to be highly 
significant. If all measured, normalized quantities 
contributed equally to PC1, they would all have 
weight 0.277 (1/√13 for 13 variables), but each 
variable contributes more or less than this. One 
way to test the significance of the contribution of 
any one measured variable, is to perform the PCA 
without that variable, then check the significance of 
the correlation between that variable and the scores 
of the new principal component. This procedure 
shows that all measured variables except L1216, 

logFWHM CIII], and log EW Lyα, correlate with PC1,  but correlations involving NV/Ly α and 
λ1400/Ly α are not very strong. PC2, accounting for 22% of the variance in this dataset, appears 
to link the EW Ly α, EW CIV, and EW CIII] with L1216, so EW CIV and EW CIII] appear to 
contribute to both PC1 and PC2, but EW Ly α contributes predominantly to PC2. Is PC2 a 
significant component? A similar correlation test shows that individually the EWs do anti-correlate 
with L1216, but this result depends on the lowest EWs for the highest luminosity QSO PG1226+023 
and the highest EWs for the low luminosity QSO PG1202+281. However L1216 correlates significantly 
(Pearson's ordinary correlation coefficient = -0.77) with PC2 formed when  L1216 is excluded. Thus 
there is a significant overall correlation between EW and L1216, although  a larger sample is 
clearly needed to investigate the individual EW correlations. Another test may be to check 
correlations between observed measurements for those measurements that contribute 
to only one significant  principal component - for example, CIV/Lyα vs. FeII/Hβ...”
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…And Principal Component Analysis concluded
PCA represents the ultimate powerful way of searching for correlations in a ڲ
    stack of data. It is so simple to perform and no special numerical skills are
   required. There are a few buts:

 The distribution of points in the multi-dimension space must be essentially ڲ
    unimodal. Consider the two-blob case…

Thus the data need to be of quadratic form; they need to cluster continuously  ڲ
     around the PC, but they need not do this necessarily in a Gaussian manner. In
    fact the method is immensely forgiving in terms of distribution, provided the
    unimodal condition is met.

 Check at the start what the form of the data scatter will be. Look at plots! It ڲ
    may well be worth considering other methods of central location for zero-
    pointing, such as the median; and normalizing other than via an rms std dev.

 .PCA software is available in widely used software packages - SPSS, SAS, Minitab ڲ
    It is also available at Francis's web site http://msowww.anu.edu.au/~pfrancis
    If using this, please observe the acknowledgement requested by Paul.
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Challenge 4

Distribute points at random according to a 
bivariate Gaussian distribution
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Back to the random numbers game
To generate numbers obeying a bivariate (or even multivariate) Gaussian, with given 
σi and ρi? Following the discussion of error matrices, it’s quite simple to formulate:

1. Set up the error matrix and determine the covariance matrix from it. (For the 
bivariate case, the error matrix is e1,1 = σx 

2, e2,1 = e1,2 = cov[x,y] =  ρ σx σy, e2,2 = σy
2, 

as we have seen.)
2. Find the eigenvalues and eigenvectors of the covariance matrix.
3. Combine the eigenvectors, the column vectors, into the transformation matrix T, 
the matrix that diagonalizes the covariance 
matrix.
4. Draw (X',Y') Gaussian pairs, uncorrelated, 
with variances equal to the two eigenvalues. 
Compute the (X,Y) pairs according to

The points in the figure were obtained 
in this manner, with ρ = 0.05 and 0.95, 
5000 points each.
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Challenge 5

Assign luminosities at random  to your 1000000 points in your 
random universe, according to a power-law luminosity function with 
a given slope, say -2.

Assign a second set of random luminosities to your galaxies, 
according to a different power-law luminosity function, with a slope 
of say -3.

Now each galaxy of yours shines on the earth (at the centre) with a 
flux of La

i
/R

i
2 and Lb

i
/R

i
2. Make a 'survey' of the whole sky; because 

your telescope has a fixed sensitivity, you will only be able to see 
your pet objects if their flux is above the survey flux llimit. (Choose 
your flux units and your survey limits with carfe, so that R-1, the 
edge of the Universe, does not come into play!) Make a second 
survey for the other set of luminosities.

Your luminosities were chosen independently and at random, right?

So for your two samples plot flux1 against flux 2, and consider 
carefully what you find......



  

End Bertinoro 3


