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Hypothesis testing
Bertinoro 4 (JVW)                                                  

Fisher, Sir Ronald Aylmer, 1890 - 1966.

‘.. if he had stuck to the ropes he would have 
made a first class mathematician, but he would not.’
                                            - his tutor at Cambridge 



  2

Data modelling -
The Bayesian Way

Plumian Professor of Astronomy, after 
many years of teaching maths.

The first to claim a liquid core for the earth.
>400 papers on celestial mechanics, fluid

dynamics, meteorology, geophysics, probability
plus these books:

The Earth: Its Origin, History and Physical 
Constitution (1924), 

Theory of Probability (1939) 
Methods of Mathematical Physics (1946) 

Sir Harold Jeffreys, 1891-1989
Fellow, St John’s College, Cambridge 1914-89

‘Fisher and Jeffreys first took serious notice of each another in 1933. About all they 
knew of each other's work was that it was founded on a flawed notion of probability.’ 
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Bayes/frequentist/parametric/non-parametric?
The essential divide:

 - non-parametric Bayesian tests do not exist (more or less).

 - If we understand the data so that we can model its collection process, then 

                                                     G O B AY E S .
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There are situations when classical methods are essential:

      1. If we are comparing data with a model and we have very few of these data; 
                          or 
       If we have poorly defined distributions or outliers,

       then we do not have an adequate model for our data. Moreover we’ll have to 
       call on non-parametric methods.

       2. Classical methods are widely used. We therefore need to understand 
       results quoted to us in these terms.

The classical tests involve us in ‘rejecting the null hypothesis’, i.e. rejecting 
rather than accepting a hypothesis, at some level of significance. 

This null hypothesis may not be one in which we have the slightest interest. 

A process of elimination. 

A classical test works with probability distributions of a statistic while the Bayesian 
method deals  with probability distributions of a hypothesis –one in which we 
may be very interested.

Rejection; elimination
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Classical testing – the Method
Set up two possible and exclusive hypotheses, each with an associated 
terminal action:

     H0, the null hypothesis or hypothesis of no effect, usually formulated 
         to be rejected

     H1, an alternative, or research hypothesis.

Specify  a priori the significance level α.

Choose a test which (a) approximates the conditions and (b) finds what is
needed; obtain the sampling distribution and the region of rejection, whose 
area is a fraction α of the total area in the sampling distribution.

Run the test; reject H0  if the test yields a value of the statistic whose 
probability of occurrence under H0 is < α.

Carry out the terminal action.
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Classical testing – the Devil is in the Detail
There is no such thing as an inconclusive hypothesis test.

Type I error : H0 is in fact true; the probability is the probability of  rejecting H0, i.e. α.  

Type II error : H0 is false; the probability is the probability β of the  failure to reject a 
                        false H0. β is not related to α in any direct or obvious way. 

The power of a test is the probability of rejecting a false H1, or (1- β).

The sampling distribution is the p.d. or pdf of the test statistic. The probability of 
any value of the test statistic occurring in the region of rejection is less than α. 

But where the region of rejection lies within the sampling distribution depends
on H1. If H1 indicates direction, then there is a single region of rejection and the test 
is one-tailed; if no direction is indicated, the region of rejection is comprised of the 
two  ends of the distribution and we are dealing with a two-tailed test.  

This is the only use we make of H1; the testing procedure can only convince us to 
accept H1  if it is the sole alternative to H0.  The procedure of elimination serves  
to  reject H0, not prove H1.  Beware -- it is human nature to think that your H1 
is the only possible alternative to H0.
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Correlation Testing - Bayesian
Uses Bayes' Theorem to extract the probability distribution for ρ from the 
likelihood of the data and suitable priors.  

We want to know about ρ independently of any inference about the means and 
variances, we have to integrate these ‘nuisance variables’  out of the full 
posterior probability prob(ρ,σx,σy, μx,μy | data).  

For the bivariate Gaussian model, the result is given by Jeffreys (1961) as

The Bayesian test for correlation is thus simple: compute r from the (Xi,Yi), and 
calculate prob(ρ) for the range of interest.

That’s it – and we have, as always with Bayes, what we really want to know.
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Bayesian correlation testing – example 1
Generate 50 samples from a bivariate Gaussian using true correlation coefficient 
of 0.5 and add some outliers, not accounted for by assuming a Gaussian. 
Top panels: rotten result! Then remove the outliers > 4σ. Better!

50 Xi,Yi chosen at random from a bivariate Gaussian with ρ = 0.5, outliers added. 

The Jeffreys probability distribution of correlation coefficient  is shown, peaking at 
around 0.2 for the upper panel. The data have been restricted to ±4σ in the lower 
panel; the distribution now peaks at 0.54.
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Correlation testing – classical approach
 ρ now taken to be a fixed quantity - 
 => probability of the data, given ρ (+ hypothesis of bivariate Gaussian).  
The result (Fisher 1944) is:

The standard parametric test is to attempt to reject the  null hypothesis that ρ = 0:
1. Compute r. Note -1 < r < 1; r=0 for no correlation, and the standard deviation in r is

 
2. Compute the probability, under this hypothesis, of r being this big or bigger. 
If this probability is ‘very small’ we may conclude that the null hypothesis is unlikely.
3. To test the significance of a non-zero value for r, compute

which obeys the probability distribution of the ‘Students’ t statistic with 
N-2 degrees of freedom. (The transformation simply allows us to use tables of $t$.) 
4. Consult the table of critical values for t; if t exceeds that corresponding to a 
critical value of the probability (two-tailed test), then the hypothesis that the variables 
are unrelated can be rejected at the specified level of significance. This level of 
significance (say 1%, or 5%) is the maximum probability which we are willing to risk 
in deciding to reject the null hypothesis (no correlation) when it is in fact true.
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Correlation testing – classical approach 2
 
☻This approach probably has not answered the question!

☻We embark on this sort of investigation when it is apparent that the data contain 
     correlations; we merely want some justification by knowing `how much'. 

☻The inclusion in the test of values of unobserved values of r is problematic.

☻The test is widely used, and is formally powerful. But 
     - the data must be on continuous scales 
     - the relation between them must be linear. (How would we know  this?)
     - the data must be drawn from Normally-distributed populations.  (How …..?)
     - they must be free from restrictions in variability or groupings.

☻There are parametric tests that help: the F-test for non-linearity and the Correlation 
     Ratio test which gets around non-linearity. 

☺However, to circumvent the problems it is far better to go to non-parametric tests. 
    These permit additional tests on data which are not numerically defined 
    (binned data,  or ranked data), so that in some instances they may be the only 
    alternative.
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The best known non-parametric test for correlation:
1. For the N data pairs of (Xi,Yi), make rank tables of Xi and Yi such that (XRi,YRi) 
pairs represent the ranks for the ith pair, 1 < XRi < N, 1 < YRi < N.
2. Compute the Spearman Rank Correlation Coefficient:

3. The range is 0 < rs < 1; a high value indicates significant correlation. To find 
how significant, refer the computed rs to the table of critical values of rs applicable 
for 4 ≤ N ≤ 30.  If rs exceeds an appropriate critical value, the hypothesis that the 
variables are unrelated is rejected at that level of significance. 
4. If N exceeds 30, compute

a statistic whose distribution for large N asymptotically approaches that of the 
t statistic with N-2 degrees of freedom. The significance of tr may be found from 
the t-distribution table, and this represents the associated probability under the 
hypothesis that the variables are unrelated.

In comparison with r,  rs has an efficiency of 91%. 
Moral – if in doubt, go non-parametric.

Correlation Testing – Classical, Non-Parametric
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Correlation – Classical, Non-Parametric: Example
A `correlation' at the notorious 2σ level is shown. Here, rs = 0.28, N = 55, and the 
hypothesis that the variables are unrelated is rejected at the 5% level of significance.
Here we have no idea of the underlying distributions; nor are we clear about the 
nature of the axes. The assumption of a bivariate Gaussian distribution would be 
crazy, especially in view of a uniformly-filled Universe producing a V/Vmax
statistic uniformly distributed between 0 and 1 (Schmidt 1968).

V/Vmax as a function of high-frequency spectral index for a sample of 

radio quasars selected from the Parkes 2.7-GHz survey. 



  13

Correlation testing - comments
• The non-parametric tests circumvent some of the issues involved in the 
non-Bayesian approach, but they have no bearing on the fundamental issue – 
what was the real question? 

2. But as ever, the Bayesian approach, strong in answering the real question, forces
reliance on a model.

3. In practice there is little difference between the Fisher test and results from 
Jeffreys distribution.  We can show this with some random Gaussian data with a 
correlation of zero. In the standard way, we can use the r-distribution to find the
probability of r being as large, or larger, than we observe, on the hypothesis that 
ρ=0. If this probability is small, the test is hinting at the possibility that the 
correlation is actually positive. Therefore we compare with the probability, from
the Jeffreys distribution, that ρ is positive.  If the probability from Fisher's 
r-distribution is small we expect the probability from ρ to be large; and in fact we 
can see, either from simulations or from the algebraic form of the distributions, that 
the sum of  these two probabilities is always → 1.  

Interpreting the standard Fisher test (illegally!) to be telling us the chance that ρ is
positive, actually works very well!



  14

Tests for Means and Variances -1 
Normally-distributed parent populations: the “Student's" t test (comparison of means) 
and the F test (comparison of variances). 

Let’s have n data Xi drawn from a Gaussian of mean μx, and m other data Yi, drawn 
from a Gaussian of identical variance σ2 but a different mean μy.

The Bayesian method: calculate the joint posterior distribution assuming a prior, 
integrating over the ‘nuisance’ parameter σ, to get the joint prob(μx, μy). From this 
we can calculate the probability distribution of (μx - μy). The result depends on the data 
via a quantity

The distribution for t’ is

By this route we do not really hypothesis-test.  We regard the data as fixed and
(μx - μy) as the variable,  simply computing the probability of any difference in the means.
We might work out the range of differences which are, say, 90% probable,  or 
carry the distribution of mean difference on into a later probabilistic calculation.
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Tests for Means and Variances -2 

Classical approach: We do not treat the μ's as random variables.  Instead we
guess that the difference in the averages (<X> - <Y>) will be the statistic we need; 
and we calculate its distribution on the null hypothesis that μx = μy. 
We find that

follows a t-distribution with ν degrees of freedom.

This is the basis of a classical hypothesis test, the Student’s t test for means.  
Assuming that μx - μy = 0, (the null hypothesis) we calculate t.  If it (or some greater 
value) is very unlikely (see a t-table), we think that the null hypothesis is ruled out.

The t-statistic is heavy with history and reflects an era when analytical calculations 
were essential.  The penalty is total reliance on the Gaussian. However, with 
cheap computing power -

we may expect to be able to follow the basic Bayesian approach.
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Tests for Means and Variances -3 

By analogous calculations,  we can arrive at the F test for variances.  Again, 
Gaussian distributions are assumed.  

The null hypothesis is σx = σy, the data are Xi (I = 1 … N) and Yi (I = 1 … M) 
and the test statistic is

This follows a F-distribution with N-1 and M-1 degrees of freedom (F table).

The testing procedure is the same as for Student's t. 

This statistic will be particularly sensitive to the Gaussian assumption.
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Tests for Means and Variances – Example 1 
Take two small sets of data, from Gaussian distributions of equal variance:
 -1.22, -1.17, 0.93, -0.58, -1.14 (mean -0.64), and 
    1.03, -1.59, -0.41, 0.71, 2.10 (mean 0.37), pooled std dev of 1.2.  
The standard t-statistic = 1.12.  

If we do a two-tailed test (not caring whether one mean is larger than another), 
we find a 30% chance that these data would arise if the means were the same.  

The one-tailed test (testing whether one mean is larger) gives 16%.

Bayesian point of view? We can calculate 
the distribution of (μx - μy) for the same data.  
In the Fig we can see clearly that one mean is 
smaller; the odds on this being so are about 
10 to 1, as can be calculated by integrating 
the posterior distribution of the difference of 
means.

                                     Distribution of the difference of means for the
                                    example data.
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Tests for Means and Variances – Example 2 
Consider the same example data as before, relaxing the assumption that the variances 
are equal.  (The sample standard deviations are 0.9 and 1.4, not significantly different, 
according to the F-test.) 

We see from the Fig that the distributions of 
μy - μx are  similar to the t-distribution, 
although as we might expect the distribution 
is a little wider if we do not assume that the 
variances are equal.  

Thus although we cannot tell (classically) 
that the variances differ, we will obtain 
somewhat different results by not 
assuming that they are the same.
                                                                                             Distribution of the difference of means assuming equal
                                                                                             variances (dashed) and without this assumption (solid).

This general sort of Bayesian test can be followed for any distribution – 
as long as we know what it is, and can do the integrations.
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Non-parametric tests (classical!)
Why? (1) fewer assumptions about the data - if the underlying distribution is unknown, 
            there is no alternative. (2) they work for small sample sizes, (3) they cope with 
            non-numerical data; and (4) they can treat samples from several populations.

‘No distribution is assumed’? Don’t be silly. What is assumed? 

Counting probabilities!

Example:  the chi-square test.  The number of items in bin i is Ni, and we expect Ei.  
For smallish numbers, Poisson statistics tells us that the variance is also Ei.  So
(Ni - Ei)2/Ei should be roughly a squared Gaussian variable, of unit variance.  

Example: the runs test - is just using the assumption that each successive observation 
is equally likely to be ‘up' or ‘down’, so a binomial distribution applies.  

The assumptions underlying non-parametric tests are weaker, and so more general, 
than the for parametric tests.

The main counter-argument concerns binning -  binning is bad; it loses information 
and therefore loses efficiency. The power of non-parametric tests may be somewhat
less, but typically no more than 10% less than their parametric equivalents.
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Chi-square test (Pearson 1900)
If we have observational data which can be binned, and a model/hypothesis which 
         predicts the population of each bin, 
Then the chi-square statistic describes the  goodness-of-fit of the data to the model.  
With the observed numbers in each of k bins as Oi, and the expected values from 
the model as Ei, then this statistic is

The null hypothesis H0  is that the number of objects falling in each category is Ei; 
the chi-square procedure tests whether the Oi are sufficiently close to Ei to be
likely to have occurred under H0. The sampling distribution under H0 of the statistic χ 
follows the chi-square distribution

(for x > 0) with ν = (k-1) degrees of freedom. (One degree of freedom is lost because of  
the  constraint that Σi Oi = Σi Ei.) This is the distribution function of the random variable
                                     where the Zi are independent random variables of standard 
Normal distribution.  

A chi-square table presents critical values; if χ2 exceeds these values, H0 is
rejected at that level of significance.
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Chi-square test – 2: The Good News
• Common – known, accepted.

• Additive – pull in different data sets,
      bin sizes, etc

• The contribution to χ2  from each bin
      can be examined to look for regions
      of good/bad fit.

• Easily computed. 

• Mean =  no. of deg of freedom; 
      variance = 2 x no. of deg of freedom

• => Rule of thumb: if χ2  ~ no. of bins,
      accept H0; if > 2 x (no. of  bins),
      reject.

۠•    Free model-fitting!  
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Chi-square test – 3: The Bad News
• The data must be binned to apply the test, and the bin populations must 
      reach a certain size because it is obvious that instability results as 
      Ei → 0.  

 => Another rule-of-thumb : > 80% of the bins must have Ei > 5.  
       Bins may have to be combined.

• However, the binning of data in general, and certainly the binning of bins, 
      results in loss of efficiency and information, resolution in particular.

3.  Small samples cannot be treated.

• The chi-square test cannot tell direction; it is a ‘two-tailed' test; it can only 
      tell whether the differences between sample and prediction exceed those
      reasonably expected on the basis of statistical fluctuations due to the finite 
      sample size.  

There must be something better…..
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Chi-square test – 4: Example
Chi-square testing/modelling: the 
object of the experiment was to 
estimate the surface-density count 
(the N(S) relation) of faint radio 
sources at 5 GHz, assuming a 
power-law N(>S) = KS-(γ-1),  γ and K 
to be determined from the distribution 
of background deflections, the 
P(D) method. The histogram of 
measured deflections is shown right.

The dotted red curve above represents 
the optimum model from minimizing 
χ2. Contours of χ2 in the  γ - K plane are 
shown left.

With the best-fit model, χ2 = 4 for 7 bins,
2 parameters; thus dof = 4. Right on.
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Chi-square test 5: Two (or k) independent samples
H0 is that the k samples are from the same population. 
1. Each sample is binned in the same r bins (a k x r contingency table). 
2. Compute

Under H0  this is distributed as χ2, with (r-1)(k-1) degrees of freedom.

There is a modification of this test for the case of the N-object 2 x 2 contingency table: 

which has dof = 1.

The usual chi-square caveat applies – cell numbers should stay above 5. If they 
don’t, combine adjacent cells, or abandon ship.  And if there are only 2 x 2 cells, the 
total N must exceed 30; if not, use the Fisher Exact  Probability test. For data which 
are not on a numerical scale, this test is probably it. 

A positive: The k-sample chi-square test  may be used to test a directional 
alternative to H0; H1 can be that the two groups differ in some predicted sense. 
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For two independent small samples with discrete binary data, i.e. mutually exclusive bins:

                                                         H0: the assignment of ‘scores’ is random

Compute 

This is the probability that the total of N scores could be as they are when the two
samples are in fact identical. But the test asks : what is the probability of occurrence
of the observed outcome or one more extreme under H0?

Thus we must compute and add the probabilities of the more extreme cases until
both samples have a zero in one of their boxes. Then

                                  ptot = p1 + p2 + p3 + ….

Computation can be ‘tedious’; but it’s the best test to use for small samples, and 
if N < 20 it is on its own.

OK, OK, so what’s the Fisher Exact Probability Test?
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Kolmogorov–Smirnov (K-S) testing
1. Calculate Se(x), the predicted cumulative (integral) frequency distribution under H0

2. Compute So(x), the observed cumulative distribution, the sum of all observations 
    to each x divided by the sum of all N observations.

3. Find 

4. Consult the known sampling distribution for D under H0, as given in a K-S table, 
    to determine the fate of H0. If D exceeds a critical value at the appropriate N, 
    then H0 is rejected at that level of significance.

Thus as for the chi-square test, the sampling distribution indicates whether a 
divergence of the observed magnitude is ‘reasonable' if the difference between 
observations and prediction is due solely to statistical fluctuations.

Advantages:      (1) no binning
                            (2) small samples
                            (3) greater power for intermediate samples
                            (4) with modification, can be directional

Disadvantages: (1) continuous functions needed, numerical scale
                            (2) no model fitting side benefit, no minimization of K-S possible.
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K-S testing, two samples
1. Calculate Sm(x), the cumulative (integral) frequency for sample 1 (m members) 
      and Sn(y), the cumulative distribution for sample 2 (n members).

2.  Find 

3.  Consult the known sampling distribution for D under H0, as given in a K-S 
       two-sample table, to determine the fate of H0. Now there are tables for both 
       one- and two-tailed tests. If D exceeds a critical value at the appropriate N, 
       then H0 is rejected at that level of significance.

If you run off the end of the tables with big samples, approximations work:

• For the two-tailed test, a simple table for the usual levels of significance is given.

• For large samples, one-tailed test, compute 

which has a ~ chi-square sampling distribution with 2 dof. Then use a chi-square 
table to determine the fate of H0. 

A powerful test: efficiency always exceeds chi-square, and just exceeds that of the
Mann-Whitney U test for very small samples. For larger samples, U-test is 
preferred.
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Kolmogorov-Smirnov tests on 
subsamples of ellipticals from the 
Disney-Wall (1977) sample of 
bright  ellipticals. 

Upper panels -
distribution functions in b/a, minor 
to major axis, for (a) the 102 
undetected and (b) the 30 radio-
detected ellipticals in the
sample. The Kolmogorov-Smirnov 
two-sample test rejects H0, that 
the subsamples are drawn from 
the same population, at a 
significance level of < 1%.
 
Lower panels – 
distribution functions in log a/b for (c) the 51 ellipticals closer than 30 Mpc, 
(d) 76 bright ellipticals in the sample more distant than this. The Kolmogorov-
Smirnov test indicates no significant difference between these latter subsamples.

K-S testing, two samples - Example
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Runs test of randomness
So simple - form a binary (1 - 0) statistic from each sample datum, e.g. heads-tails, 
or the sign of the residuals about a mean or a best-fit line. It is to test H0 that this new 
statistic is random; successive observations are independent.  Are there too few runs?

Determine m, the number of heads or 1's; n, the number of tails or 0's, N=n+m; and 
find r, the number of runs.

Look up the level of significance from the tabled probabilities for one or two-tailed 
test – depending on H1, which can specify (as the research hypothesis) how the non-
randomness might occur.  (In general we are concerned simply with the one-tail test, 
asking whether or not the number of runs is too few, the issue being independence of 
data in a sequence.) 

For m ‘heads' and n ‘tails' with N data, the expectation value of number of runs is

…becoming asymptotically Gaussian, so that the Gaussian distribution or its integral 
erf can be used by forming

and consulting tables for the Normal distribution. This is the procedure when the 
numbers exceed 20 and toddle off the end of runs table. 
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Runs test of randomness - Example

A spectrum of the quasar 3C207, taken with the 4.2-m William Herschel Telescope. 
Red curve: baseline fitted by Fourier minimum-component technique. The regions 
considered for runs test are shown in the separated sections, baseline-subtracted and 
magnified by 3. These carefully-selected regions of the spectrum are examined with the 
runs test. Left region - concordance, 36 positive deflections, 29 negative, 31 runs vs
an expectation of 32.1 runs, z = -0.28. Right region – in the Hydrogen Balmer-line 
series, and several members are present in emission; rejection of randomness 
at about 4σ: 31 positives, 32 negatives, 16 runs against an expectation of 31.5, 
z = -3.94. Broad emission lines yield contiguous regions decreasing the number of runs.
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Wilcoxon-Mann-Whitney U test for two samples
There are two samples, A (m members) and B (n members); H0 is that A and B are 
from the same distribution or have the same parent population, while H1 may be one 
of three possibilities: A stochastically larger than B;  B stochastically larger than A; 
or A and B differ in some other way, perhaps in scatter or skewness.
The first two hypotheses are directional, resulting in one-tailed tests; the third is not,
resulting in a two-tailed test. To proceed, 
1.  Decide on H1 and the significance level α,
2. Rank in ascending order the combined sample A+B, preserving the A or B identity 
     of each member.
3. (Depending on choice of H1) Sum the number of A-rankings to get UA, or vv, the 
     B-rankings to get UB. Tied observations are assigned the average of the tied ranks. 
     Note that if N=m+n,

     so that only one summation is necessary to determine both.

Look up the result in the table calculated from the sampling distribution (pdf of U).
The table presents probabilities for U > observed, and for U < observed. For samples
>10, the sampling distribution for U tends to Normal with mean μA = m(N+1)/2 and 
variance σA

2 = mn(N+1)/12. Significance can be assessed from the Normal distribution,
by calculating                                 
                                                         where +0.5 corresponds to considering probabilities 
of U ≤ that observed (lower-tail), and -0.5 for U ≥ that observed (upper-tail).  
If the two-tailed test is required, simply double the probabilities.
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U test - Example

Magnitude distributions for flat and  steep  
(radio) spectrum quasars from a complete 
sample of quasars in the Parkes 2.7-GHz 
Survey. H1 is that the flat-spectrum quasars 
extend to significantly lower (brighter) 
magnitudes than do the steep-spectrum 
quasars, a claim made earlier by several 
observers. The eye agrees with H1, and so 
does the result from the U test, in which we 
found U = 719, z = 2.69, rejecting H0 in 
favour of H1 at the 

         0.004 level of significance.
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Non-parametric tests for comparison of samples
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Single-sample non-parametric tests
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Two-sample non-parametric tests
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End Bertinoro 4 (JVW)


