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Surveys: Detection: Luminosity Functions
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Detection – what do we mean?
- preliminary to much else that happens in astronomy, whether it means locating a
    spectral line, a faint star or a gamma-ray burst.  

- we take it here as location, and confident measurement, of some sort of feature 
    in a fixed region of an image or spectrum.

- elusive objects or features at the limit of detectability tend to become the focus of 
    interest in any branch of astronomy.
 
- then concept of detection (and non-detection) requires careful examination.

- non-detections important because they define how representative any catalogue of 
    objects may be. This set of non-detections can represent vital information in 
    deducing the properties of a population of objects.

- if something is never detected, it’s a datum, and can be exploited statistically; every 
    observation potentially contains information, constrains emission energy.

- possible to deduce distributions of parameters, e.g. luminosity function from the 
    detections/catalogue approach, or directly from fairly raw sky data. 

 - we consider both – but detections first.
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Detection – a model-fitting process
- When we say “We've got a detection''  we generally mean “We have found what 
   we were looking for'‘ – OK  at reasonable signal-to-noise.  
- e.g comparison of model point-spread functions with the data. 
- extended objects? – wider range of models needed.

A clear statistical model is required.  The noise level (residuals  from the model) 
may follow Poisson (√N)  statistics → Gaussian. The statistics depend on more than
the physical and instrumental model.  How were the data selected for fitting in the first 
place? Picking out the brightest spot in a spectrum means that we have a special set of 
data.  The peak pixel, in this case, will follow the distribution appropriate to the maximum
value of a set of, say, Gaussian variables. Adjacent pixels will follow a less well-defined 
distribution.

Simulation – “Model sources'' are strewn, and the reduction software is given the job of 
telling us what fraction is detected. These essential large-scale techniques are very
necessary for handling the detail of how the observation was made. 

Example: radio astronomy synthesis images: noise level at any point depends on: 
    - gains of all antennas, 
    - noise of each receiver, 
    - sidelobes from whatever sources happen to be in the field of view, 
    - map size, tapering parameters, ionosphere, cloud…..input data not known!



  4

Detection – the simpler, classical approach
What do we really want from the survey? 
          Are we more concerned with detecting as much as possible (completeness) ?
          Are we more worried about false detections (reliability) ?  
          What are we going to do with the detections ? 
             - publish complete set of posterior probabilities of observed params everywhere?
             - or just the covariance matrix, as an approx?
             - or marginalized signal-to-noise, integrating away nuisance params?

From the classical point of view, if we are trying to measure a parameter α, the 
likelihood sums up what we have achieved:

Suppose that α is a flux density and we wish to set a flux limit  for a survey. We only 
catalogue detections when our data exceed this limit slim.  Then two properties of the 
survey are useful to know:
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Classical detection - Example
Suppose our measurement is of s and the noise on the measurement is Gaussian, 
of unit std dev.  The source has a “true'‘ flux density s0, measured in units of the 
std dev.  We then have repectively for the pd 
of the data given the source, and for the pd 
of the data when there is no source:

Integrating these functions from 0 to s makes 
it easy to plot up the completeness against 
the false-alarm rate, taking the flux limit as a 
parameter.  

High completeness does indeed go hand in 
hand with a high false alarm rate.  However 
there are quite satisfactory combinations for flux limits and source intensities of  
a few  standard deviations.  

In real life?  The problem - outliers not described by Gaussians.

For source flux densities in units of σnoise 

ranging from 1 unit (lower right) to 
4 units (upper left). Flux limits are 
indicated by dots, from 0 on right to 3 
on far left. A 4σ source and a 2σ flux 
limit give a false-alarm rate of 2% and 
a completeness of 99%.
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Detection – the Bayesian way
Conditional probabilities! => the Rev Thomas Bayes  is calling…..
We have
               prob(data | a source is present, flux density s)     (1)
and         prob(data | no source is present).                           (2)

(1) Take the prior probability that a source, intensity s, is present in the measured 
area to be εN(s), where N(s) is a normalized distribution, the probability that a single 
source  will have a flux density s. 

(2) The prior probability of no source is (1- ε) δ(s); δ is a Dirac delta function.
  
Then the posterior probability
                      prob(a source is present, brightness s | data) 
is given by

Integrating this expression over s gives the probability that a source is present, 
for given data.
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Bayesian detection – Example 1
1. Radio telescope, randomly-selected position in the sky. 
2. Model of the data D, the single measured flux density f : Gaussian distribution 
    about true flux density S with a variance σ2. 
3. The extensive body of radio source counts also tells us the prior for S;
     approximate this by the power law prob(S) = K S-5/2. (K normalizes the counts
     to unity; there is presumed to be one source in the beam at some level.)
4. Probability of observing f when the true value is S : 
5. From Bayes : with n independent flux 
measurements fi then

Suppose that the source counts were known to
extend from 1 to 100 units, the noise level 
was σ = 1, and the data were 2, 1.3, 3, 1.5, 2 
and 1.8. The Fig. shows posterior probabilities 
for the first 2, then 4, then 6 measurements. The 
increase in data gradually overwhelms the prior 
but the prior affects conclusions markedly (as it 
should) when there are few measurements.

Power-law prior, Gaussian error dist.  
Posterior probability distribution for 2, 
4, 6 measurements shows that the form
approaches Gaussian as numbers increase.
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Detection - summary
1.  Bayesian treatment of detection gives a direct result;  we may read off a suitable 
        flux limit that will give the desired probability of detection. 

2. But – the confusion, and confusion limit  - images or spectral lines crowd together, 
       overlap as we reach fainter.  Several different objects may contribute to to the total 
       flux at any coordinate. Even if only one ‘object’ is present, with a steep N(s) it will be 
       more likely that the flux results from a faint source plus a large upward noise 
       excursion, rather than vice-versa.  

3. Then we only expect to measure population properties -- parameters of the flux-density 
       distribution N(s) or its spectral equivalent. We are getting in to the confusion 
       regime,  a concept we’ll consider later. Beware of the return of hyperparameters.

4. Detection is a modelling process:
           - it depends on what we are looking for,
           - how the answer is expressed depends on what we want to do with it next.  

5. The simple idea of a detection, making a measurement of something that is really 
        there, applies when signal-to-noise is high and individual objects can be isolated 
        from the general signal.  At low s/n, measurements can constrain  population 
        properties, with the notion of “detection" disappearing, in two senses:
        we drop into the confusion level, and/or we deal with censored data.
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Catalogues, selection effects
Typically, a body of astronomical detections is published in a catalogue. Objects are in
this catalogue – or not - on the basis of some clear criteria. If not, upper limit is info.

Most astronomical measurements are affected by the distance to the object.  
  - proper motion, fixed velocity, becomes a smaller angle inversely as the distance.  
  - Apparent intensity (flux density) drops off as the square of the distance.  
  - ellipticity of a galaxy becomes harder to detect (seeing blur).
  - so-called k-corrections can make objects relatively brighter or fainter.
We measure an apparent quantity X and infer an intrinsic quantity by a relationship 
Y=f(X,R)  where R is the distance to the object in question.  The function f may be
complicated, for reasons of both observation and relativistic geometry.

Take a simple case (the principles carry over). Observe a flux density S and infer a 
luminosity L given by L=S R2.  The smallest value of S we are prepared to believe is 
Slim; if a measurement is below this limit, the object is not in our catalogue or sample.

Our objects (=“galaxies'') are assumed to be drawn from a luminosity function ρ(l), 
the number of objects  within Δl about l per unit volume.  Using only our 
catalogue set of measurements L1,L2,… however, we will not be able to reproduce ρ.  
Instead, we will get the luminosity distribution η, where
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….and Malmquist Bias + Example
Crucially, V(l) is the volume within which sources of intrinsic brightness l will be near 
enough to find their way into our catalogue.  We get

Obviously η will be biased to higher values of luminosity
than ρ. This sort of bias occurs in a multitude of cases in astronomy, and is often 
called Malmquist bias.

Example: The luminosity function of field galaxies is well approximated by the 
Schechter function

in which we take γ = 1 and l*  = 10 for illustration.  
To obtain the form of the luminosity distribution 
in a flux-limited survey, we multiply the Schechter 
function by l3/2.  The differences between the 
luminosity function and luminosity distribution are 
shown in the Fig.

Malmquist bias – a serious issue in survey
astronomy. The bias depends on the (probably
unknown) form of the luminosity function. It
passes on all kinds of unwelcome information.

The luminosity function ρ (steep curve)
and the (flat-space) luminosity 
distribution, plotted for the Schechter 
form of the luminosity function.
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Malmquist Bias and the luminosity-distance correlation
Malmquist bias arises because intrinsically bright objects can be seen within 
proportionately much greater volumes than small ones. Because most of the 
volume of a sphere is at its periphery, it follows that in a flux-limited sample the 
bright objects will tend to be further away than the faint ones - there is an in-built
distance-luminosity correlation.

The luminosity - distance correlation is widespread, insidious and very difficult 
to  unravel.  It means that for flux-limited samples, intrinsic properties correlate 
with  distance:
   - two unrelated intrinsic properties will appear to correlate because of
       their mutual correlation with distance.  Plotting intrinsic properties -- say, X-ray 
       and radio luminosity --  against each other will be very misleading.  
  - much further analysis is necessary to establish statistical dependence. Such 
       analyses may require detailed modelling of the detection process.  
 - consider measuring the ellipticity of galaxies - distant ones may well look rounder
       because of the effects of seeing. More distant galaxies appear more luminous
       thanks to Malmquist. We are on course for deducing that round galaxies are more 
       luminous or vice versa. A
 - detailed model will be necessary to establish the relationship between true ellipticity, 
       measured ellipticity, and the size of the galaxy relative to the seeing disc.
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Adopt a  Schechter function with γ = 1 and l* = 10 for the purposes of illustration.  
The probability of a galaxy being at distance R is proportional to R2, in flat space.  
The probability of it being of brightness l is proportional to the Schechter function.  
The probability of of a galaxy of luminosity L at distance R being in our sample is

The product of these three probability terms is the bivariate distribution prob(l,r), 
the probability of a galaxy of brightness l and distance r being in our sample. 

There is a clear correlation between distance and luminosity. Look familiar? +++>
A direct check of this is to simulate a large spherical region filled with galaxies whose 
luminosities are drawn from a Schechter function, and select a flux-limited 
sample. 

The luminosity – distance correlation - Example

Left: Contour plots of the bivariate prob(l,r).  The contours are at logarithmic intervals; 
galaxies tend to bunch up against the selection line, leading to a bogus correlation between 
luminosity and distance. Right: Results of a simulation of a flux-limited survey of galaxies drawn 
from a Schechter function.
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Example – remember ‘The fishing trip’?
Suppose that we have plotted something against something, on a Fishing Expedition.

3. Does the eye see much correlation? If not, formal testing for correlation is probably 
a waste of time.

2. Could the apparent correlation be due to selection effects? Consider for instance the 
beautiful correlation obtained by Sandage (1972): 3CR radio luminosities vs distance.

Nb (1) Sandage recognized the
problem.

Nb (2) Hasn’t stopped anybody
plotting luminosity vs redshift and
‘proving’ that quasars and radio
galaxies are the same because 
they fit the line…so do baseballs.

                            
                            Radio luminosities of 3CR radio sources versus distance modulus. 
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Survey bias – last warning
Note an effect that competes with Malmquist bias due to observational error.  
The number of objects as a function of apparent intensity N(s), the number counts 
or source counts,  usually rises steeply to smaller values s - there are many more 
faint objects than bright ones.  

In compiling a catalogue we in effect draw samples from the number count 
distribution,  forget those below Slim, and convert the retained fluxes to luminosities.  
The effect of  observational error is to convolve the number counts with the noise 
distribution.  Because of the steep rise in the number counts at the faint end the effect 
is to  contaminate the final sample with an excess of faint objects. (An object of 
observed  apparent flux density is much more likely to be a faint source with a positive 
noise excursion than a bright source with a negative excursion. Observe with zero 
noise!) This can severely bias the deduced luminosity function towards less luminous 
objects.  

This effect does not occur if the observational error is a constant fraction of the 
flux density, and the source counts are close to a power law.

Many if not most types of astronomical observations suffer from the range of  
problems due to Malmquist bias, parameter-distance correlation and 
source-count  bias. Think that yours does not? I am prepared to take a bet. 
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- assume a catalogue of objects, high reliability and well-defined limits.
- examination of an intrinsic variable l (e.g. luminosity) requires ρ(l) .  
- measure Li for all of the objects in some (large) volume? How? 
One of the best methods is the  1/Vmax estimator.  
 - Vmax(Li) are the maximum volumes within which the ith object could lie, 
       and still be in the catalogue.  
 - Vmax  thus depends on the survey limits, distribution of the objects in space, 
      and the way in which detectability depends on distance.  
 - simplest case: a uniform distribution in space is assumed.  Given the
    Vmax(Li) , an estimate of the luminosity function is

      in which its value is computed in bins of luminosity, bounded by the Bj .
 - a maximum-likelihood estimator, and so has minimum variance for any 
      estimate based on its statistical model. 
 - errors are uncorrelated from bin to bin and can easily be estimated – 
      the fractional error in each bin is ~ 1/√Nj , where Nj is the number 
      of  objects in each bin. Better error estimates - bootstrap. 

The luminosity function and Vmax
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 - determination of Vmax is the crunch; choosing the flux limit of a survey affects: 
      (1) the number of sources that are missed, 
      (2) the number of bogus ones included, and 
      (3) the extent to which faint sources are over-represented.  

 => MC simulations? Rough idea of the luminosity function enables this.

 - with V the volume defined by the distance to the source as its radius, the 
     distribution of V/Vmax is very useful in estimating the actual limit of a survey.  
 - if the correct flux limit adopted then we expect V/Vmax to be uniformly 
     distributed between zero and one.  This can be checked by, e.g. A  K-S test, 
     and such a process is a model-fitting procedure to estimate survey limit.

 - this procedure fails horribly at large (z > 0.2) cosmological distances where 
     cosmic evolution dominates. 
 - the derivation of cosmic evolution led Schmidt (1968) to derive the technique.

 - there’s a vast literature; summary: Willmer 1997.

The luminosity function and Vmax cont… 
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From the  previous simulation with a Schechter lum fn, a flux limit of 20 units gives 
a  sample of ~200 objects.  Left Fig.: the luminosity distribution η(l) shows a strong 
peak at ~5 units, related to the characteristic luminosity l* = 10.  Bins are 0.5 dex 
wide. (Faint sources are greatly under-represented, because they are  above the 
flux limit for only small distances.) 

Right Fig: the result of applying the Vmax method and bootstrapping to derive errors. 
The input lum fn is the solid line and the estimate from the ~200 sample via 1/Vmax 

is shown as dots and error bars.  Because Vmax is so small for the faint sources, the 
few faint sources in the sample give a large contribution to ρ  although the errors 
are correspondingly large.  For simplicity the luminosity functions were
normalized,  so giving luminosity probability distributions.

1/Vmax luminosity function - Example 
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V
max

 – non-uniform distribution
• If uniform distribution is not a good assumption (the case for ~ all cosmological
• projects)  then there are three ways to a better  estimate.
•
• (1)  Bin the data into narrow ranges of distance, and estimate the lum fn within  
      each bin.  But at large distances we will know nothing about low luminosities.
      The approach is further limited by the decreasing numbers of objects as the 
      number of distance bins is increased.

(2) We can make progress on spatial dependence with stronger assumptions.  
      Our data is the set of pairs (Ri, Li); we want the bivariate distribution ρ(r,l). 
      Usual assumption: the distribution factorizes, so that the form of the 
      luminosity function does not change with distance, but the 
      normalization can. This method will allow extrapolation of info from small 
      distances and low luminosities. The standard estimator of ρ is the C- method
      (Lynden-Bell 1971), important because it is also a MLE. If parametric forms are 
      known for ρ and φ then normal modelling methods can be used.

(3) “Free-form'' methods are intermediate; they fit quite general functions to the data 
      populating the r - l plane.  Examples of these are                               where the 
      cross terms break the factorizability.  
      If we use small number of terms in the expansion => extrapolation into 
      areas of the r - l plane unpopulated by observations.
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Vmax – non-uniform distribution - Example

A complete sample of ~ 400 radio quasars. Left: radio luminosity function in 
redshift ranges 0 – 0.5 (red), 0.5 – 1.0 green, 1.0 – 2.0 (blue), 2.0 – 3.0 (light
blue) and 3.0 – 5.0 (disgusting pink). Vertical bars – lower limits in completeness
for each redshift range. Right: space density as a function of redshift for 5
power ranges: log P2.7 = 25.8-26.2, 26.2-26.6, 26.6-27.0, 27.0-27.4, 27.4-27.8,
denoted by decreasing line weight.
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Survey data -  
Censored and Confused 

Peter A G Scheuer  1930 - 2001

Outstanding theoretical astrophysicist, mentor and friend, intensely modest
and private man of very few words and very many brilliant ideas.

“In 1955 Ryle's group compiled the 2C catalogue of radio sources using interferometric techniques. 
The catalogue contained vastly more faint radio sources than would be expected in any of the 
standard cosmological models. In particular, these observations were in fatal conflict with the 
predictions of the steady state cosmological model of Bondi, Gold and Hoyle. These results were 
hotly contested, not only by the proponents of steady state theory, but also by the Australian radio 
astronomers at Sydney, led by Bernard Mills, who found far fewer faint sources and called into 
question Ryle's result. The Cambridge radio astronomers realised that the flux densities of the 
faintest sources were systematically overestimated because of the presence of faint sources within 
the beam of the radio interferometer. In a paper rightly considered a masterpiece, published in 1957 
in the Proceedings of the Cambridge Philosophical Society, Scheuer showed how the correct form 
of the number counts could be found by studying the interferometer traces and found that there was 
indeed an excess of faint sources, but less than originally thought. This discovery was the 
first really convincing evidence for the evolution of the radio source population over 
cosmological time- scales.”   M S Longair obit, 2001.
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Survival Analysis – censored data
A primary sample of objects - a series of measurements from which we
pick out ‘detections’.  The results often find their way into catalogues, 
e.g. the New General Catalogue (NGC) or the 3CR Catalogue. 

 => complementary data? Upper limit at every pixel? Not retained.

‘Resurvey’ is different, e.g.  measure Hα luminosity of NGC galaxies.
 - now very useful to quote upper limits; real objects are there.
 - sometimes a resurvey may yield lower limits, e.g.  measurement of
    X-ray and radio flux densities for the NGC galaxies would yield
    both upper limits and lower limits for the radio to X-ray spectral index.

Statistics dealing with limits is called ‘survival analysis’, from medical statistics:
at end of a study some subjects have survived, some not.
 - measurements which are only limits are called ‘censored’. 
 - introduced into astronomy by Avni, Feigelson, co-workers 1980 >. 

Survival analysis offers (i) estimation of intrinsic distributions (like luminosity 
functions), (ii) modelling and parameter estimation, (iii) hypothesis testing 
and (iv) tests for correlation and statistical independence, for cases 
in which some of the available measurements are limits.  
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The key assumption is that the censoring is random; this means that the chance 
of only an upper limit being available for some property is independent of the 
true value of that property. 

Assumption often met for flux-limited samples.  For an object of true luminosity 
L and distance R, the condition for censoring is that

the flux limit for the survey.  If R is a random variable, independent of L, and Slim is 
fixed, then the chance of censoring is independent of L. 

Careful examination of how a sample was selected  is necessary to determine 
that survival analysis is applicable.

Let’s be definite. Survey at wavelength A; resurvey the sample at wavelength B.
So we get some values of LB and some upper limits LU

B.

Our aim – to construct the normalized distribution of LB , which will be α ρB

Two estimators available, a recursive relation due to Avni and the Kaplan-Meier
estimator of the cumulative distribution. Both are maximum likelihood. Both work 
for upper and lower limits. The former requires binning; the latter does not rely on 
binning, but being cumulative, errors are highly correlated from one point on 
the estimate to the next.

Survival Analysis – Censored Data
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Survival Analysis – Censored Data
Kaplan-Meier estimator:

Lower limits: arrange data in increasing order.
                     di is the number of observations of Li

                     ni is the number of observations = / > Li

                     δi = 1 for detection, 0 for lower limit
Upper limits: arrange data in decreasing order
                     ni is the number of observations < / = Li

                     δi = 1 for detection, 0 for upper limit 

Example 1 :

Left: Avni estimator, binned data. Distribution of spectral indices (optical to X-ray) for a sample 
of optically-selected QSOs; observed distribution (red dashed), and true distribution after 
including lower limits. Right: same data, shown cumulatively as dots. Kaplan-Meier 
estimator is the solid line, following the bins used in the Avni formulation. 
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Survival Analysis- Censored Data
Example 2 : back to the simulated field-galaxy sample. This was selected at one 
wavelength. We ‘resurvey’ at another, and get 67 detections and  317 upper limits, in 
a simulation allocating luminosites from independent  Schecter functions at both 
wavelengths. 

Left: luminosity distribution and upper limits for the field galaxy simulation; there are 67 detections
and 317 upper limits (dashed bins). Right: luminosity probability distribution (black dots) from the 
Avni estimator, together with bootstrap error estimates. Solid line – theoretical distribution. 
Lighter dots are a 1/Vmax   estimate, displaced slightly in luminosity for clarity.

Survival analysis and 1/Vmax results agree – both are MLEs and are based on
similar models. The survival analysis gives better estimates here of the luminosity 
function, using more data – but the real advantage comes in correlation 
analyses, or reconstructions of non-distance-dependent distributions 
(e.g. spectral indices).
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The confusion limit
In many cases of astronomical interest, we find that faint objects are much more 
numerous than bright ones.  

Faint objects crowd together; ultimately they start to be unresolved and our signal 
becomes a mixture of objects of various intensities, blended together by the point
spread function of our instrument.  

Examples include radio sources in deep surveys,  spectral lines in the Lyman-α forest, 
stars at the cores of globular clusters, and faint galaxies observed in the optical.

The confusion limit concept was developed during a bitter controversy amongst radio 
astronomers and cosmologists in the 1950s, the source-count/Big Bang/Steady State 
controversy.

The root of the problem was instrumental, wildly different source counts being obtained 
at Sydney (Mills Cross; essentially filled aperture) and Cambridge (interferometer).  

Scheuer (1957) analyzed the statistics of the source counts and showed that the 
Cambridge results were seriously affected by confusion.  The wide beam of the
interferometer meant that many radio sources were contributing to each peak
in the record; these had erroneously been interpreted as discrete sources.
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The confusion limit - Example
To show the pronounced effect of confusion, here is  a simulation of a 1D scan of 
sources obeying a Euclidean source count N(>S) α S-3/2.  The beam is a simple 
Gaussian and there is, on average, one source per beam. 

A simple count of the peaks in the record gives a maximum-likelihood slope for the 
source count of -1.8 with standard deviation 0.3, very different from the true value 
of -1.5.  In the case of an interferometer, the presence of sidelobes biases the 
faint counts to much steeper than true values; the apparent cosmological evolution 
this implied was the subject of the original controversy.

Confusion simulation at a level of one source per beam area. Input sources – red verticals; 
solid line is the response when convolved with a Gaussian beam.
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The confusion limit – the p(D) technique
The technique developed by Scheuer is known to astronomers as “p(D)” , or 
“probability of Deflection” - deflections of the needle of a chart recorder.

Technique has been used in the radio, the X-ray, infrared, and Lyman-α. The 
method derives the probability distribution of measurements in terms of the 
underlying source count, which may be recovered by a model-fitting process. Its 
benefit is that information is obtained from sources which are much too faint to be 
“detected” as individuals.

The derivation of the distribution requires conditional probabilities, Poisson statistics, 
characteristic functions, Fourier transforms. It is a beautiful bit of math by Scheuer.

The result: the FT of the p(D) distribution is 

contains the source count N. R is the FT of r. Analytic solutions are available 
when N(S) is a power law, but the inverse transform to get p(D) has to be done 
numerically.  

In real life we need to take account of differential measurement techniques in which
measurements from two positions are subtracted to avoid baseline errors. 
And there’s always noise. A modelling process is needed to recover N(S).
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The confusion limit and p(D) – Example 1

The derivation of source counts from p(D) is another technique in which population 
characteristics are derived from observations of discrete objects or features without 
forming an object list or catalogue.

Wall & Cooke (1975) applied the p(D) technique for filled aperture telescopes to 
extend the 2.7-GHz radio source counts to much fainter levels than could be achieved 
by identifying individual sources:

The 2.7-GHz counts from Wall & Cooke (1975): the darker line is derived from ordinary 
source counts with error bars not much wider than the line, while the p(D) results are 
shown in grey, the dashed lines representing one standard deviation of the 
fitted parameters.
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(Minimum chi-square method) / p(D) – Example 2
Chi-square testing/modelling: the 
object of the experiment was to 
estimate the surface-density count 
(the N(S) relation) of faint radio 
sources at 5 GHz, assuming a 
power-law N(>S) = KS-(γ-1),  γ and K 
to be determined from the distribution 
of background deflections, the 
p(D) method. The histogram of 
measured deflections is shown right.

The dotted red curve above represents 
the optimum model from minimizing χ2. 
Contours of χ2 in the  γ - K plane are 
shown left.

With the best-fit model, χ2 = 4 for 7 bins,
2 parameters; thus dof = 4. Right on.
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Final challenge:

Use 1/V
max

 estimator of the luminosity 
function to recover each of the two power-law 
luminosity functions from the 'surveys' of 
your universe of 1000000 objects.
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End JVW Bertinoro 5


