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COMPOSITION OF THE COSMOS UDM
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Dark Energy: @ expansion history, ISW
o effect, halos of “UDM”?
UDM prediction of weak gravitational lensing by LSS )
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ds® = gudatdz” = a®(7) -1+ 28)dr’ + (1 — 2<I>)d€2]

EQUATION FOR SCALAR PERTURBATION IN LINEAR THEORY
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0 ¢’ = O\HIYQCW is the speed of sound of the scalar field
Coo = Cs(a — 00)
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ACDM
UDM

Sk = Ipc—1"~
‘-\'k = 0.1 h Mpc ‘\‘_‘

f
2009)

(SC et al.

Gravitational potentials for
ACDM and UDM at different
scales and for different values
of oo = 1072, 1072, 107 L.
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RESULTS

ONVERGENCE POWER ECTRUM

o) = & ["a Wm0 o (L)

X

Q h=0.72, Q, =0.26 and Qx =0.74

© BBKS transfer function (Bardeen et al. 1986)

@ Peacock & Dodds (Peacock & Dodds 1996) linear to non-linear mapping
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Weak lensing power spectra
I(l+1)C""(l)/(2m) of CMB

light for ACDM and UDM for

e D)/ CREpa (D)

-=---__ different values of

Coo? =1075,107°, 107

10

WEAK LENSIN¢ NAL IN UNIFIED DARK MATTER MODELS



UDM WEAK

NSING POWER SPECTRA

CMB
BACKGROUND GALAXIES

The redshift distribution of sources is (Kaiser 1992)
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Weak lensing power spectra I(I + 1)C**(l)/(27) of background galaxy light for
ACDM and UDM for different values of coo? = 10=6, 10~5, 10—4. J
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ACDM and UDM for different values of coo? = 10=6, 10~5, 10—4.

Weak lensing power spectra I(I + 1)C**(l)/(27) of background galaxy light for J




CONCLUSIONS

When the Jeans’ length of the Newtonian potential increases, ®(a)
starts to decay earlier in time (for a fixed scale), or yet at greater scales
(for a fixed epoch).
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When the Jeans’ length of the Newtonian potential increases, ®x(a)
starts to decay earlier in time (for a fixed scale), or yet at greater scales
(for a fixed epoch).

This reflects on weak lensing by suppressing the convergence power spec-
tra at high multipoles.
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When the Jeans’ length of the Newtonian potential increases, ®x(a)
starts to decay earlier in time (for a fixed scale), or yet at greater scales
(for a fixed epoch).

This reflects on weak lensing by suppressing the convergence power spec-
tra at high multipoles.

Moreover, we find that for low redshift sources the dependence of UDM
weak lensing signal on the sound speed cs is much stronger.
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RESULTS

CONVERGENCE POWER SPECTRUM

o) = & ["a Wm0 o (L)

’

o W (x,n(x)) = —2x f;o dy’ XXTXn(x/) weight function of weak lensing

o n [x(z)] redshift distribution of sources

ASSUMPTIONS
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