- Carlos Contreras
- Chris Blake, Karl Glazebrook

Testing Cosmology with 2-point correlation function: what about clustering history?

- Peebles (1980) "Large Structures of the Universe"
- Perturbations on Cosmological equations
- Growth rate f = d(ln(D))/d(ln(a))
- Linder(2007) $f(z)=Omega_m(z)^x$

Testing Cosmology with 2-point correlation function • Desirable:

Testing Cosmology with 2-point correlation function Difficult to measure

- f = Beta * b
 - Beta has been barely measured, need of big catalogs.

Previous Results for β and f						
Survey	z	β	f	Reference		
2dFGRS	0.15	0.49(09)	0.49(10)	Hawkins 2003		
SDSS	0.34	0.34(03)	0.64(09)	Cabre & Gastañaga 2008		
DEEP	0.77	0.70(26)	0.91(36)	Guzzo 2008		

- But now comes Wiggle-Z !!
- ~ 240,000 red-shifts
 - 0.2 < z <1.3
- Big volume of space
- Data enough to do quality measurements of correlation function and Beta, in higher z.

Testing Cosmology with 2-point correlation function But peculiar velocities distorts the correlation function.

 The distortion can be modeled, and fitted to the data, to get Beta.

Correlation Function

• THE END

Correlation Function

- Fitting Model, with Simplex.
- Results:

Ω_m	γ	eta	$r_0 (Mpc \ h^{-1})$	a~(Km/sec)
0.1	1.60(02)	0.57(06)	4.4(08)	238(13)
0.2	1.63(02)	0.68(08)	3.9(09)	263(11)
0.3	1.66(01)	0.79(05)	3.6(06)	280(08)
0.4	1.67(02)	0.82(08)	3.4(09)	280(11)
0.5	1.67(01)	0.87(06)	3.2(08)	280(05)

- Correlation Function for Galaxies typically a power law:
- $E(r) = (r/ro)^{gamma}$
- usually ro ~ 4 Mpc/h gamma ~ -1.7

- Model examples:
- 4 parameters: ro, gamma, Beta, a

