

OBSERVATIONS OF EXTRAGALACTIC SOURCES FROM WMAP 3-YEAR DATA

Thomas Franzen
Cavendish Astrophysics Group
University of Cambridge

Matthew Davies, Richard Saunders, Keith Grainge and Marcos López-Caniego

Presentation at School of Astrophysics "Francesco Lucchin" 26 May '09

Observations of extragalactic sources from WMAP 3-year data

★ Introduction:

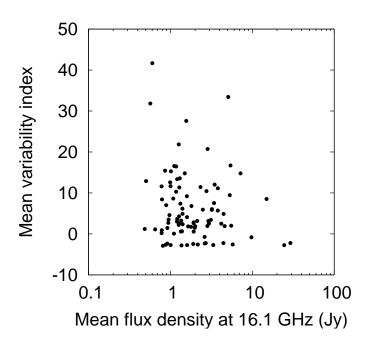
WMAP all-sky survey and our observations

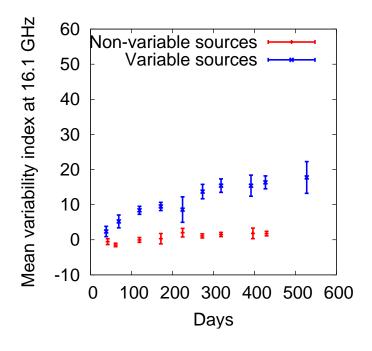
* Results:

Variability of source population and classification Correlation in variability at 16.1 and 33 GHz Spectral properties Comparison of VSA and WMAP fluxes

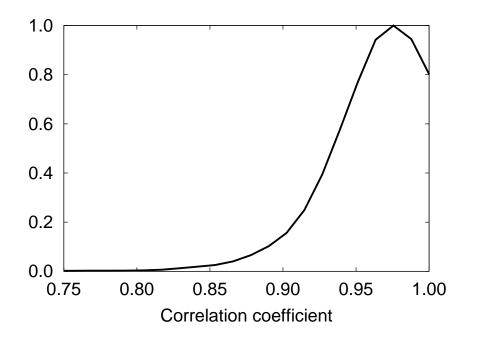
* Summary of results and preliminary conclusions

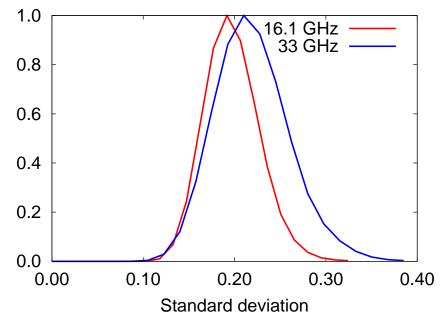
WMAP all-sky survey

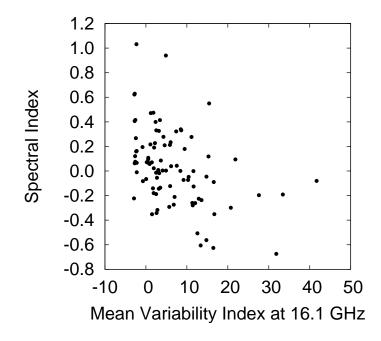

- * WMAP mission first *all-sky* surveys of extragalactic sources at 23, 33, 41, 61 and 94 GHz
- New Extragalactic WMAP Point Source (NEWPS) catalogue 369 sources detected at 5σ in at least one of the frequency bands (López-Caniego et al. 2007)
- Statistical properties of extragalactic sources above $\sim 10\,\mathrm{GHz}$ still largely unknown.
- Studies of variability only two large-scale surveys complete in flux density at $\geq 15~\mathrm{GHz}$

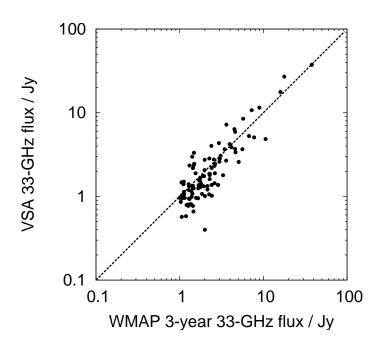

Observations

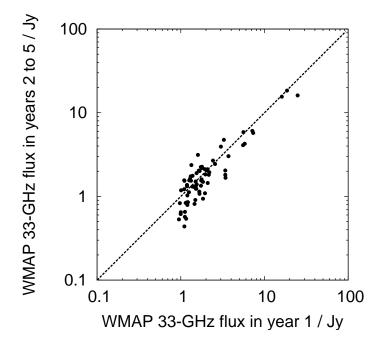
- \bigstar Our sample contains a total of 97 sources and is complete to $\approx 1.1 \,\mathrm{Jy}$ at 33 GHz
- Flux densities measured in 2007 and 2008 at 16.1 GHz with Arcminute Microkelvin Imager (AMI) and at 33 GHz with Very Small Array (VSA)
- * Flux calibration error $\approx 4\%$ but errors on VSA fluxes dominated by thermal noise


Variability of source population and classification


$$V = \frac{100\%}{2\bar{s}} \sqrt{(S_1 - S_2)^2 - (\sigma_1^2 + \sigma_2^2)}$$


Correlation in variability at 16.1 and 33 GHz




Spectral properties

Comparison of VSA and WMAP fluxes

Summary of results

- No strong correlation between variability and flux density
- * 48% of sources variable above uncertainties of \approx 4 per cent at 16.1 GHz
- ★ Variability at 16.1 and 33 GHz very highly correlated ($R = 0.957 \pm 0.032$); little change in levels of variability at the two frequencies
- Median spectral index $\alpha_{14.2}^{33} = 0.04$ (S $\propto \nu^{-\alpha}$); significant shift in spectral index of variable sources (-0.06 ± 0.05) and non-variable sources (0.13 ± 0.04)
- * WMAP fluxes affected by Eddington bias

Preliminary conclusions

★ Lots of variability

This will affect the stability in time of high-frequency source catalogues and will affect Planck!

Look out for our paper for details of analysis and further conclusions - Davies & Franzen 2009 in prep.