# COSMOLOGY WITH GALAXY CLUSTERS

#### **BARBARA SARTORIS**

**University of Trieste** 

in collaboration with S. Borgani

Bertinoro, 27 May 2009

# **Evolution of galaxy clusters**



#### The mass function as a cosmological test

Changing the P(k) normalization

Changing the density parameter



## Mass function: Press & Shechter approach

#### Assumptions: Spherical collapse

Gaussian distribution of primordial density fluctuations

$$n(M)dM = -\frac{2}{V_R} \frac{\partial p(\delta_c, M)}{\partial M} dM = \sqrt{\frac{2}{\pi}} \frac{\rho}{M^2} \frac{\delta_c(z)}{\sigma_M} \left| \frac{d\log\sigma_M}{d\log M} \right| exp\left(-\frac{\delta_c(z)^2}{2\sigma_M^2}\right) dM$$

- $p(\delta_c, M)$ : Gaussian probability for a perturbation of mass M to exceed  $\delta_c$
- $D(z)=D(\Omega_m, \Omega_{DE}, \omega)$ : linear growth rate of density fluctuations
- $\delta_c = \delta_c(z)$  critical density constrast for spherical collapse (=1.69 for EdS)
- $\bullet$  variance at the mass scale M linearly extrapolated at redshift  $\,z$  for the filter function  $W_{_M}(k)$  :

$$\sigma_M^2(z) = \frac{D^2(z)}{2\pi^2} \int_0^\infty dk k^2 P(z) W_M^2(k)$$

# The Wide Field X-Ray Telescope (WFXT)

US: JHU, Marshall, CfA - Italy: ASI/INAF (Milano, Trieste, Bologna, Napoli, Rome)

Whitepaper on Cluster Science submitted to the Decadal Survey:

<u>R. Giacconi et al.</u>: Galaxy Clusters and the Cosmic Cycle of Baryons across Cosmic Times (arXiv: 0902.4857)



RFI Whitepaper submitted to the Decadal Survey:

<u>S. Murray et al.</u>: Wide Field X-Ray Telescope Mission

# The Wide Field X-Ray Telescope (WFXT)

US: JHU, Marshall, CfA - Italy: ASI/INAF (Milano, Trieste, Bologna, Napoli, Rome)

Whitepaper on Cluster Science submitted to the Decadal Survey:

<u>R. Giacconi et al.</u>: Galaxy Clusters and the Cosmic Cycle of Baryons across Cosmic Times (arXiv: 0902.4857)

WFXT survey parameters (0.5-2.0 keV band)

| Quantity                                                    | Survey              |                     |                     |
|-------------------------------------------------------------|---------------------|---------------------|---------------------|
|                                                             | Deep                | Medium              | Wide                |
| $\Omega (\text{deg}^2)$                                     | 100                 | 3000                | 20,000              |
| Exposure                                                    | 400 ksec            | 13 ksec             | 4 ksec              |
| Total Time                                                  | l yr                | 2 yr                | 2 yr                |
| $S_{\min}$ point<br>erg s <sup>-1</sup> cm <sup>-2</sup>    | $3 \times 10^{-17}$ | $5 \times 10^{-16}$ | $3 \times 10^{-15}$ |
| Tot. AGN                                                    | $5 \times 10^5$     | $4 \times 10^{6}$   | $1 \times 10^7$     |
| $S_{\min}$ extended<br>erg s <sup>-1</sup> cm <sup>-2</sup> | $1 \times 10^{-16}$ | $1 \times 10^{-15}$ | $5 \times 10^{-15}$ |
| Tot. Clusters/Groups                                        | $5 \times 10^4$     | $3 \times 10^5$     | $5 \times 10^5$     |

RFI Whitepaper submitted to the Decadal Survey:

<u>S. Murray et al.</u>: Wide Field X-Ray Telescope Mission



- limit mass virialization varing with redshift
- Sheth & Tormen mass function
- top-hat window function
- transfer function: Bardeen et al 1986 with corrections Sugiyama for barions.
- Fisher matrix method
- fiducial values from WMAP-5
- flat prior







$$w(a) = w_0 + (1-a) w_a$$



• Parametrize deviations from GR with:

$$\frac{dln\delta}{dlna} = \Omega_m(a)^\gamma$$

gy = 0.55 : standard GR

# **Future developments**

- modifications of GR theory
- non-gaussian primordial fluctuations

# Thank you

# **Selection functions of WFXT surveys**

- Take F<sub>lim</sub> corresponding to 1500 photons:
- pPrecise determination of redshift
- Robust mass proxy (e.g.
- $Y_{\chi} = T_{500}M_{gas}$ ; Kravtsov et al. 06)
- Use the observed  $L_{\chi}$ - $M_{500}$  relation (Maughan et al. 07)
- Deep survey to calibrate the  $Y_{\chi}$ -M<sub>500</sub> relation down to  $F_{lim}$  for detection in the Wide Survey

- Only using clusters dN/dz;
- Assume flat prior;
- Flux limits for precise mass proxy (i.e. avoid self-calibration);

(Most of constraining power on Wide & Medium surveys.

# The large-scale clustering of galaxy clusters

Galaxy clusters form in correspondence of high-density regions of the primordial fluctuation field (Kaiser 1984, Bardeen et al. 1986)
pThey are <u>amplified tracers</u> of cosmic inhomogeneities.



 $\xi_{DM}(r,z)$ : correlation function of Dark Matter  $\xi_{cl}(r,z,M)$ : correlation function for clusters

$$\xi_{cl}(r, z, M) = b^2(z, M) \, \xi_{DM}(r, z)$$

b(M,z): bias factor Measure of the clustering amplification induced by the process of selective structure formation; in general Mass- and redshift-dependent.

#### The large-scale clustering of galaxy clusters

**x** Kaiser '84: clusters form in correspondence of high-density peaks:

$$b(M,z) = \delta_c(z) / \sigma^2(R_M,z)$$

Mo & White '96: halo clustering in Eulerian space from extended PS approach by Bond et al. '91:

$$b(M,z) = 1 + \frac{\left[d_c(z)/s(R_M,z)\right]^2 - 1}{d_c(z)}$$

Sheth & Tormen '99: peak-background splitting applied to MW96

$$\begin{split} b(M,z) &= 1 + \frac{a \left[ \frac{d_c(z)}{s(R_M,z)} \right]^2 - 1}{d_c(z)} + \frac{2p/d_c(z)}{1 + \left[ \frac{a \left[ \frac{d_c(z)}{s(R_M,z)} \right]^2 \right]^p}{1 + \left[ \frac{a \left[ \frac{d_c(z)}{s(R_M,z)} \right]^2 \right]^p}{s(R_M,z)} \right]^2} \end{split}$$

X Xn practical applications we deal with a population of objects with mass above a limiting value:

$$b_{eff}(M,z) = \frac{\int_M^\infty dM' b(M',z) n(M',z)}{\int_M^\infty dM' n(M',z)}$$



p For a flux-limited (Flim) sample of clusters:

(a) Estimate for each redshift

 $L = 444d_{L}(z)_{2}F_{lim}$ 

(b) Convert L into Mlim

(c) Compute beff as a fct. of z

Higher-z objects are rarer

Matarrese et al. (1996): W=1, G029, bg=20, b

## The large-scale clustering of galaxy clusters

#### SB & Guzzo '01



 $\xi(r) \Rightarrow$  Collins et al. (2000)  $\Omega_m = 0.3$ ,  $\Omega_\Lambda = 0.7$ , CDM P(k)  $\Rightarrow$  Schuecker et al. (2000)  $\Omega_m = 0.5$ ,  $\Omega_\Lambda = 0.5$ , CDM

## **WFXT cluster surveys**

WFXT survey parameters (0.5-2.0 keV band)

| Quantity                                                    | Survey              |                     |                     |
|-------------------------------------------------------------|---------------------|---------------------|---------------------|
|                                                             | Deep                | Medium              | Wide                |
| $\Omega (\text{deg}^2)$                                     | 100                 | 3000                | 20,000              |
| Exposure                                                    | 400 ksec            | 13 ksec             | 4 ksec              |
| Total Time                                                  | l yr                | 2 yr                | 2 yr                |
| $S_{\min}$ point<br>erg s <sup>-1</sup> cm <sup>-2</sup>    | $3 \times 10^{-17}$ | $5 \times 10^{-16}$ | $3 \times 10^{-15}$ |
| Tot. AGN                                                    | $5 \times 10^5$     | $4 \times 10^{6}$   | $1 \times 10^7$     |
| $S_{\min}$ extended<br>erg s <sup>-1</sup> cm <sup>-2</sup> | $1 \times 10^{-16}$ | $1 \times 10^{-15}$ | $5 \times 10^{-15}$ |
| Tot. Clusters/Groups                                        | $5 \times 10^4$     | $3 \times 10^5$     | $5 \times 10^5$     |

- Characterize ICM properties and measure mass proxies for thousands of clusters at z>1.
- Trace the epoch of entropy injection and metal enrichment of the ICM.
- Study the intense dynamics of proto-cluster assembly at z~2.

# **The Wide Field X-Ray Telescope (WFXT)**

US: JHU, Marshall, CfA - Italy: ASI/INAF (Milano, Trieste, Bologn ତ୍ର ତ୍ରି ଅନ୍ତର୍ଭ tal Rନ୍ତର P. Rosati & Multipaparation Clus

> QuickTime<sup>a</sup> and a decompressor are needed to see this picture.

P. Tozzi

RFI Whitepaper submitted to the Decadal Survey: Whitepaper on Cluster Science submitted to the Decadal Survey: R. Giacconi et al.: Galaxy Clusters and the Cosmic Cycle of Baryons across Cosmic QuickTime? and 0902.4857 are needed to see this picture.