Continuum calibration of K-band multi-feed receiver

Rashmi Verma

Istituto di Radioastronomia (INAF) & ESTRELA

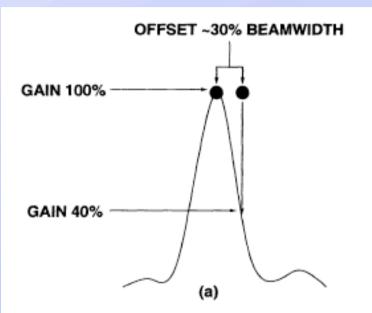
Supervisors

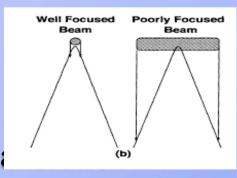
Isabella Prandoni, Loretta Gregorini, Alessandro Orfei

National School of Astrophysics, Bertinoro, 28/05/2k9

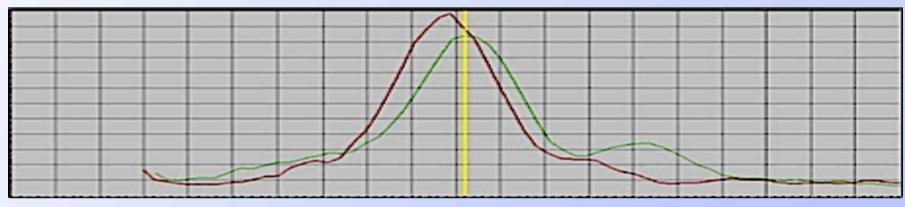
Brief outline of the talk

- ◆ The K-band multi-feed receiver to perform high sensitivity survey
- Pointing calibration
 - ? Pointing is important
 - Test measurements
- Results
 - New optical alignment
 - New sub reflector unit model & pointing model
 - ◆ Antenna characteristic parameters
 - Antenna gain
 - System temperature & spillover temperature


The K-band multi-feed receiver

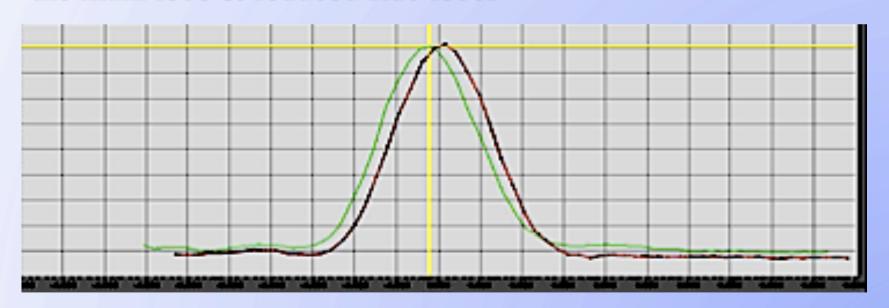

7GHz

- High sensitivity continuum observation spectroscopy & polarimetry
- ◆ 7-feed hexagon geometry with central feed
- ◆ Freq.band,18–26 GHz, BW=2GHz
- ◆ 14 output channels (7 LCP + 7 RCP)
- ◆ T_{sys} (el =45°) = 75K @ 22GHz (lab)
- ◆ Gain(el=45°)_{central}=0.12K/Jy, G_{lateral}=0.11KJy(Simul.)
- ◆ HPBW = 96" (0.026°), Sky distance = 212"(0.059°) @ 22 GHz


Pointing is important

- Antenna pattern Gaussian
- ◆ At high freq, HPBW gets narrow
- Pointing offset & poor
- focus degrades SNR
- Observed a point like source,
- ◆ W3OH with mechanically deter. optics to check pointing of new receiver.
- ◆ It's a circumpolar source & bright at 22 GHz
- Used VLBI acquisition system for pointing ca

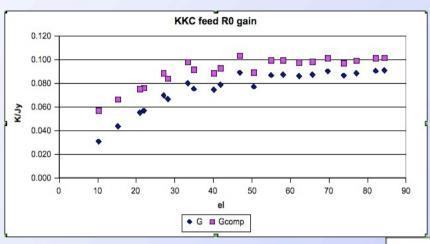
Test Measurements


W3OH @ el = 33° with mech. Optical alignment, Tamp = 54K Optics is not aligned properly

- Mfeed is mounted at secondary focus
 on Medicina 32 dish
- Used sub-reflector to align optics
- ◆ Sub-reflector 5 degree of freedom, 3tr+2tilt

New optical alignment

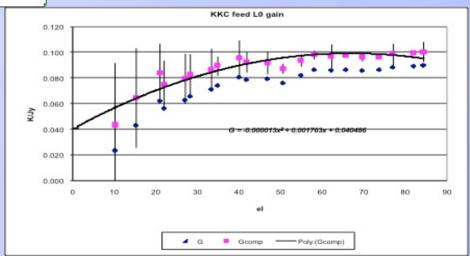
- ◆ Test observation with different sub-reflector positions
- ◆ The new optical alignment has increased the power () in the main lobe & reduced side lobes



W3OH @ el = 36° with new alignment, Tamp = 81K

Sub-reflector and pointing model

- ◆ New SCU model in the operating system for the new optical alignment
- ◆ Observed a number of sources to establish the pointing model
- ◆ After the new pointing model we have characterize central and lateral horns, measured Tsys and Antenna gain


Multi-feed Antenna gain

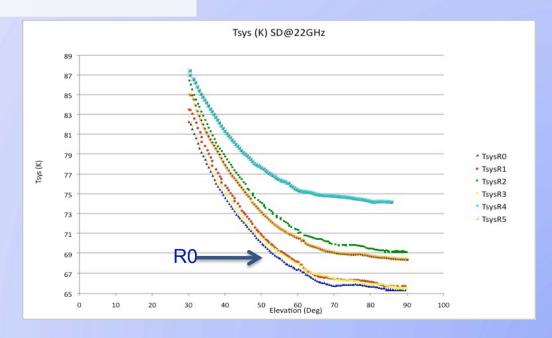
Central feed, gain = 0.1 K/Jy

Lateral feed gain = 98% of Central feed

Right circular polarization

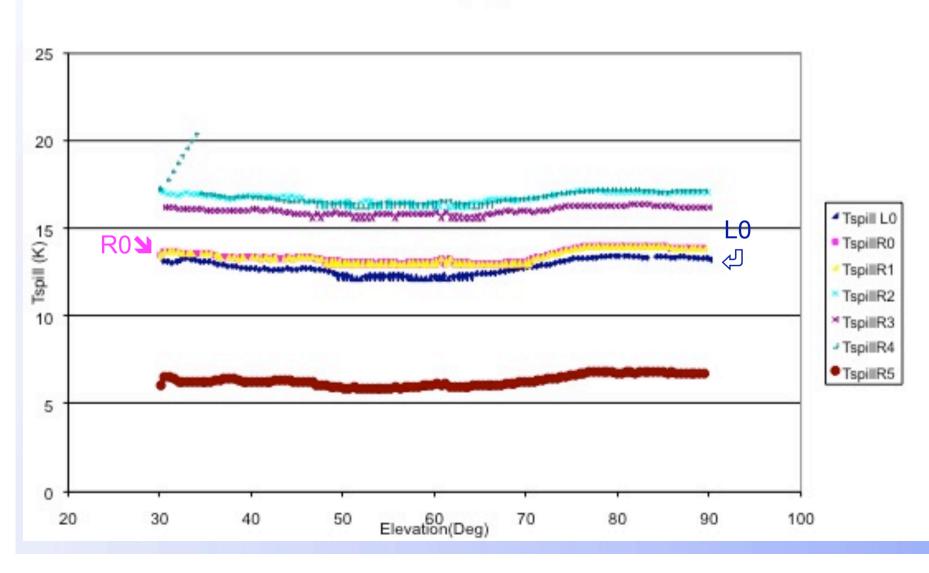
Left circular polarization

M-feed system temperature


$$T_{sys} = T_{sky} + T_{spill} + T_{receiver} \label{eq:Tsys}$$

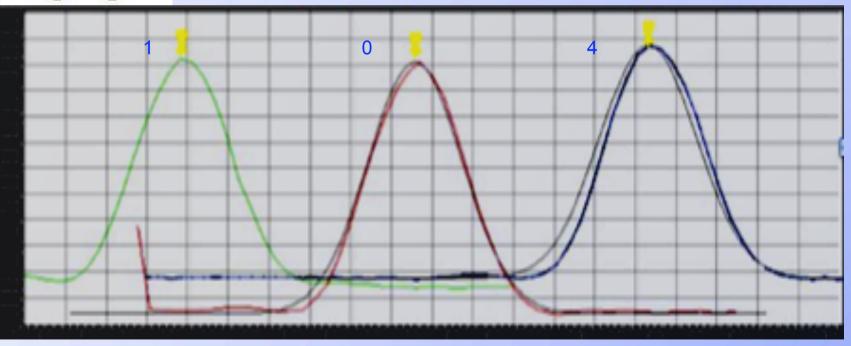
 T_{sky} is the contribution of the background sky brightness.


 $T_{receiver}$ is the noise temperature of the receiver.


 T_{spill} is the rear and background spillover.

Tsys (el = 45) = 75 K opacity 0.1(lab)

M-feed spillover temperature


Lateral feeds – 4 0 1

Azimuth scan on W3OH with feed 4 0 1

Beam separation = 0.060°

HPBW = 0.026°

Pilot survey

- ◆ After characterizing the antenna @ 22 GHz with VLBI acquisition system with a bandwidth of 400MHz
- ◆ Conducted a Pilot survey in Feb 2009 using new Total power backend for mfeed, instantaneous bandwidth upto 2 GHz
- ◆ Using On the fly mapping technique to map a patch of sky at an elevation of 45° (Refer to Simona Righini)
- ◆ Antenna gain with TP acquisition system has been measured at an el of 45°

Comparison table

Antenna	Freq.	Elements	Configuration	Sky Distance	FWHM
Medicina 30 m	18 -26 GHz	7	Hexagonal + central horm	212"	92"
Pico Valeta 30 m	230 GHz	2 X 9	2 square 3X3	24"	11.7"
Nobeyama 45 m	43 GHz	6	Rectangular 2X3	80"	39"
Aricibo 305 m	1.5 GHz	7	Hexagon +central horn	26 cm b/w the horns	3.3'
Parkes 64 m	1.5 GHz	13	2 concentric hexagon + central horn	28'	14.4'