5

12,54 i
5

o~
b

x

-

Outline

fluid and particle methods
length and time scales
integration schemes

evaluation of interparticle forces
hardware acceleration

close encounters

the kichen sink

the AMUSE project

Gas-Sphere Methods

e stellar dynamical analogs of the familiar equations
of stellar structure (mass, hydrostatic equilibrium,
energy transport):

%—]\f = A7rrp
0 5 GMp
or () = r2

L
or (%<U2>) B A k2

Fokker-Planck Methods

e diffusion equation in phase space (diffusion coefficients
are orbit-averaged relaxation rates):

ON 0 0
o~ Top NVPH 5y VDI
0> 0>
{aEQ [NDEE] | 9] [NDJJ]
82
| NDpgj]

N-Body Methods

e direct integration of the equations of motion

X — X
o

N
a = % = » Gmy i=1,...,N
i x; — x;

* incorporation of multiphysics

— dynamics

— stellar and binary evolution

— stellar encounters and collisions

— external fields

— gas dynamics

— radiative transfer

Dynamical Modeling Issues

arge dynamic range
ong-term integration

ong-range forces

arge numbers of particles

close encounters

Dynamic range

crossing time scale 1-10 Myr

relaxation time scale 0.1-10 Gyr = 3x 10 s
core collapse time scale 1-100 Gyr

evaporation time scale 10-1000 Gyr

90° scattering (1 kT binary)

— length scale: 1-10 AU

— time scale: 1-10 yr

(MS) stellar collision 103-10%s

neutron star binary <1s

Integration Schemes

predictor—-corrector schemes generally preferred!
second order scheme:

2P = ™ 1Mt %a(”)5t2
of = o™ et

a? = acc(a?)
)

ot =y 4 LaP 4 ™)t
too inaccurate for use in collisional systems
widely used in galactic dynamics
time reversible

define

where

and

az-j

jij

J71

+ a?,

Higher Derivatives

¥}

N d N
. a; .
a; = Z A5, Ji = i = ZJija
il
ijrij
3
ijvij
5 Suja;
Gm;a;;
Jig .
—— — 6ayiJi; — 30
Gm.ji:
JJig .
5 — 90485 — IBijdiz — 3Vija;
Tij * Vij By = ij ij g
2) 1] T 2
J "y ij " Jig
2 + (30 —

Yij

re.

¥}

407))

ij

Fourth-Order Hermite Scheme

2 = ™ 4ot 4 %a(”)étQ + %j(”)ét?’

P = o™ a5t + %j(”)5t2

a’? = acc(a?)

P = jerk(a?, o)
o) = 4 L™ 4 aP)ot 4+ L (5™ — 7)ot
) =) L) s+ L(a (”> — aP)ot?

(Makino & Aarseth 1992)

Sixth-Order Hermite Scheme

P o= ™ 4§t 4 %a(")(5t2 + %j(”)ét?’ + 2—143(”)(5754 + ﬁc(”)&é
_ n n 1 (n 2 1 _.(n 3 1 (n 4

o = o™ 4 a4 1 4 L 4 Lelmsy

o = a"™ + st + %c(”)5t2

a’? = acc(a?)

¥ = jerk(z?,vP)

s? = snap(a?, o, d?, j?)
ot — () %(a(”) + aP)dt + 1_10<j(n) — Vot + El()(s(n) + sP)6t?
D =) L) s L () a2 4 L () ey

(see Nitadori & Makino 2008 for more)

Integration Schemes

adaptive, individual/block time steps almost always used

adaptive higher-order schemes very accurate, but
generally not time reversible

address this using time symmetrization

ot = < [r(t+dt)+7(t)]

(Hut, Makino, McMillan 1995)

Evaluation of Long-Range Forces

e direct summation (brute force)
* neighbor schemes

 tree codes

Neighbor Schemes

e Ahmad-Cohen scheme

— neighbor sphere of radius r,

— stars inside the sphere have
forces a; recalculated at every
step—irregular forces

— stars outside have a;
extrapolated at most steps,
recalculated on longer time
scales—regular forces

— substantial savings in
computation cost over brute-
force summation

Tree Codes

e Barnes-Hut scheme

— recursively divide space
into octants (quadrants)
to separate the particles

Tree Codes

e Barnes-Hut scheme

— recursively divide space
into octants (quadrants)
to separate the particles

— each particle has a unique
location in the tree

11

12

10

13

15

14

Tree Codes

Barnes-Hut scheme

— recursively divide space

into octants (quadrants)
to separate the particles

— each particle has a unique
location in the tree °

— for each particle on which
the force is needed,
descend the tree, opening
only nearby boxes

— unopened boxes are o
treated as a multipole
expansion

Hardware Acceleration

* the GRAPE project

N
aZEXZ:ZGm] /

i x; — x;

3

Hardware Acceleration

* the GRAPE project

for (int j = 0; j < n; j++)
if (3 '= 1) {

double r2 = 0;

for (int k = 0; k < 3; k++) {
dx[k] = pos[j]l[k] - pos[i][k];
r2 += dx[k]*dx[k];

}

double mr3i = mass[]j]/(r2/sqrt(r2));

for (int k = 0; k < 3; kt++)
acc[i][k] += dx[k]*mr3i;

Hardware Acceleration

* the GRAPE project

pldy
;LE

Hardware Acceleration

* the GRAPE project

e special-purpose architecture, deeply pipelined,
massively P4d rallel (Sugimoto et al.1990 ; Makino et al. 2005)

— GRAvity PipE Host |_Xem ,(
L GRAPE

— gravitational force accelerator | Computer J' v
a’

i
=

Y N
.!.H,:‘.:
-
»
ip
e

§:3
)

Hardware Acceleration

* GRAPE speedup

a 2
O
=
E~
S
g O
)]
Q
0,
n
W —R
©
Q
n,
a0 —
24

DR@®

I

6@

Dlllllllllll

prototype

_II|IIII|IIII|I

O
blue gene

@ LLNL

1980 1990 2000

Hardware Acceleration

* GRAPE speed ~1 Tflop/s per chip (latest generation DR)

 comparable speeds now achievable with GPUs

e 50-100 Tflop/s computing power now routinely
available in commodity GPU clusters

Close Encounters

gravity is a singular force: expect problems nearr=0

expect ~1 90° encounter in the entire system per
dynamical time

expect an X kT binary to undergo a close encounter
(periastron ~ semimajor axis) every X relaxation times

—> average heating rate per binary ~ kT/t,

binaries are dynamically important and potentially long
lived, and must be managed along with the large-scale
motion

Close Encounters

* close encounters not handled well by standard
large-scale integrators

— energy errors accumulate: 10°° per orbit for a 10 kT binary
for 10 relaxation times in a 10° particle system = O(1)
total error

— far too many time steps: 100 steps per period for a 10 kT
binary => 300 N? steps per relaxation time

* special treatment of close encounters and binary/
multiple motion is essential

— regularization and/or unperturbed motion

Regularization

e avoid errors associated with singular motion by
transforming the equations of motion to remove the
singularity

e generally involves both a coordinate and a time
transformation

Regularization

* e.g.intwo dimensions r = (x, y)

d?r B GMr

a2 3
e set z=x+1iy

dQZ_ GMz

der |z

e transform

Regularization

e avoid errors associated with singular motion by
transforming the equations of motion to remove the
singularity

e generally involves both a coordinate and a time
transformation
* “production” versions
— Kustaanheimo & Stiefel (1965)
— “chain regularization” (Mikkola & Aarseth 1990, 1993)
— “algorithmic regularization” (Mikkola & Tanikawa 1999)

Unperturbed Motion

switch to unperturbed two-body (kepler) orbit for

small perturbations

A 2
P o= _Ranje
G(m1+m2)

couple with robust estimators of stability for triple
and higher-order multiple systems (e.g. Mardling 2007)

only resolve close binaries and multiples when
needed—treat as inert particles the rest of the time

MUST do this whether or not regularization is
employed

“Kitchen Sink” Codes

monolithic design
very successful for many dynamical problems

limited physics menu

— detailed dynamics

— approximate stellar evolution

— semi-analytic/heuristic binary evolution

— cartoon hydrodynamics

hard to maintain/modify/expand functionality

The State of the Art

 NBODY4[6)6++ + BSE + sticky spheres

Aarseth, Hurley, Tout, Spurzem,...

* kira + seba + sticky spheres

McMillan, Portegies Zwart, Hut, Makino

 MC + startrack/BSE + sticky spheres
Rasio, Fregeau, Gurkan, Belczynski, Kalogera

| cases: SPH/MMAS after the fact

n al
(Lombardi, Gaburov)

Software Issues

star clusters bring together related
fields that have traditionally been
pursued independently

multiphysics problems, software
integration essential

don't want to reinvent the wheel
large legacy code base

tradition of open source

Software Issues

star clusters bring together related
fields that have traditionally been
pursued independently

multiphysics problems, software
integration essential

don't want to reinvent the wheel
large legacy code base

tradition of open source

Design goals

software framework to connect formerly independent
modules

interoperability: “plug and play”

— explicitly enable code calibration and comparison
don’t hard-wire legacy codes!

don't mandate a programming style or language
incorporate legacy code by wrapping it

address inflexibility in current kitchen sink codes

AMUSE

http://amusecode.org

modules for stars, dynamics,
multiples, collisions, gas dynamics, etc.

implemented as “black boxes” with wrappers
well defined interfaces
fully MPI parallel

Ill

use python as a top-level “glue” language

Python as a Glue Language

flexible

object oriented

MPI and hence C, C++, f77, f90, f95,... interfaces
large user base

many contributed modules

numpy acceleration

Stellar Dynamics

Stellar Evolution

Hydrodynamics

Stellar Dynamics

Stellar and
Binary
Evolution

Multiples

Hydrodynamics

detailed
stellar
data

Stellar Dynamics

aa

Multiples

Hydrodynamics

“

Stellar and
Binary
Evolution

detailed
stellar
data

Xr90~GM/<v2> ‘

smallN/

ipl
multiples fewbody

Star Module

initialization

mass, composition

<

;tar ID

toy model

analytic calculation

lookup table

heuristic recipe

full simulation

(real star...)

stellar
data

INTERFACE

MERS

radius
temperature
(structure)

ookup R(M, t), L(M, 1), ...

Ste”ar star 1, initial mass M,
module star 2, initial mass M,

EFT89 star 3, initial mass M,
star 4, initial mass M,

INTERFACE

ookup R(M t), L(M, t)
stellar star 1, |/(t|al mass M, \

module star 2/n|t|al mass M,
EFT89 star,é, initial mass M, 7

/ sta/4, initial mass M,
/

/

INTERFACE

ID =3, t |

star 1, t,, r,(m), L,(m), p,(m)

star 2, t,, r,(m), L,(m), p,(m)

star 3, t;, ry(m), L;(m), p,(m)

star 4, t,, r,(m), L,(m), p,(m)

EV (star)

INTERFACE

stellar
module
EV (star)

/

/

INTERFACE

ID =4,t |

AMUSE Status

e currently have modules for

— stellar dynamics (10)
— stellar and binary evolution (5)

— stellar collisions (2) e
— multiples (~1) thon
— gas dynamics (4)
— radiative transfer (3) ¢
MPI
* all coupled via the top-level /
Python faver T I ——
T tear i+l Radiative |

E Evolution , E Transfer

from amuse.community.ph4.interface import ph4 as gravity
from amuse.community.ph4.interface import EFT89 as stars
from amuse.community.ph4.interface import MMAS as coll

... (initialization)
while time < end_max:
time += dtime
while gravity.get_time() < time:
collision= gravity.evolve(time).check_coll()
if collision > O:
(id1,id2) = gravity.get_colliding_pair()
stars.evolve(gravity.get_time())
coll.collide_stellar_pair(id1, id2)

stars.evolve(time)

print "end att=", time

time = 0.0 Myr

log L

4.2

4
log T

3.8 3.6

3.4

