

Stellar-mass black holes

Tomaso Belloni (INAF - Osservatorio Astronomico di Brera)

BOLOGNA 2006 SEP 29

Stellar-mass black holes

Tomaso Belloni (INAF - Osservatorio Astronomico di Brera)

BOLOGNA 2006 SEP 29

Outline

Ø X-ray binaries Black holes Accretion Jet ejection GR / Spin 0

Black holes
 Neutron stars
 Accretion disk
 Jet/corona

X-ray binaries

Accretion disc \

Disc wind

X-ray heating

Hot spot

Jet

Accretion stream

Companion star

.R. Aynes 2001

BHX-ray binaries

No magnetic field
 None are pulsars
 Late spectral type companion (but not only)
 Accretion disk extends closer to the BH
 Inner disk region: GR effects

Low-BNS X-ray binaries

Magnetic field 10⁸-10⁹ G
 Some are (ms) pulsars, most are not
 Late spectral type companion
 Accretion disk extends closer to the NS
 Inner disk region: GR effects

OPT

BH/NSX-ray binaries

UV

Secretion disk structure Black hole or neutron star?

Thin Hisk model

0000

Geometrically thin Optically thick Quiet Approximated as:

$$T(R) = \left\{ \frac{3GM\dot{M}}{8\pi R^3 \sigma} \left[1 - \sqrt{\frac{R_*}{R}} \right] \right\}^{1/4}$$

Black Holes in Binary Systems. Observational Appearance

N. I. Shakura Sternberg Astronomical Institute, Moscow, U.S.S.R.

R. A. Sunyaev Institute of Applied Mathematics, Academy of Sciences, Moscow, U.S.S.R.

6

High variability on all time scales

Complex and hard spectrum

Time (seconds)

Outline

Junamical mass

Take a transient system Wait for quiescence Measure optical spectrum Obtain mass function

Dynamical mass

Take a transient system Wait for quiescence Measure optical spectrum Obtain mass function

Black-hole binaries

Actual mass measurement

q and *i* needed
Mass ratio:
estimate from spectral type
emission lines from accretion disk
photometric data
Inclination:
external info (jet inclination?)
photometric data

We need photometric data (in quiescence!)

Photometric data

Optical light curves
 Ellipsoidal variations
 Complications

Black-hole binaries

Direct methods

Ultra-soft X-ray spectrum Hard spectral tail Strong aperiodic noise Inner radius of accretion disk

 $T(R) = \left\{ \frac{3GM\dot{M}}{8\pi R^3 \sigma} \left[1 - \sqrt{\frac{R_*}{R}} \right] \right\}^{1}$

Outline

The role of accretion rate

Accretion rate as main parameter
 Many systems are observed as transients
 Quiescence: low accretion rate (L_X = 10³⁰⁻³³ erg/s)
 Outburst: large accretion rate (L_X = 10³⁷⁻³⁹ erg/s)
 Important to study accretion rate range

BH/NS in quiescence

NS: Aql X-1

BH: GS 2023+338

"Canonical" NS spectrum
BB/NS Atm., kT=0.1-0.3 keV
plus
Power law, photon index 1-2

 BHC spectrum
 Power law, photon index 1-2 or
 Optically thin plasma, kT=2-3 keV

Quiescent luminosity

Clear segregation in L_X Larger min-max L swing in BH than NS

Similar binaries: similar swing in mass inflow rate expected

Different mass-to-radiation conversion efficiency?

For low rates, increasing fraction of energy stored in the accretion flow In BH: energy "lost" in the horizon **induced efficiency** In NS: energy is release at the surface (standard efficiency)

The larger swing for BF

Lhe larger swing for BF

The larger swing for BH

 s^{-1}

Log Luminosity (erg

The larger swing for BH

let-dominated advective flows

Körding et al. (2006)

Accretion rate from radio

 $L_{rad} \propto \dot{M}^{1.4}$

Independent of X rays

Soft and Hard States

Two main states are well studied
 Hard State
 Soft State
 Do they have anything in common?
 Spectra, variability, jet properties

Known since Uhuru

Tananbaum et al. (1971)

Hard State: hard (Comptonization?) component, very soft (if any) disc

Soft State: S&S disk + weak steep power law

Cutoff vs. no cutoff

Energy Spectra

Same component?

Fast Timing Properties

Hard State: very strong (30-50%) noise, low-frequency QPOs
Soft State: weak power law

Disc should not be noisy

Same component?

Gallo et al. (2003)

Hard State: correlations Soft State: radio quiet

Homan et al. (2005) Corbel et al. (2003)

Fender et al. (1999)

Hard State: mildly relativistic

Fender, Belloni & Gallo (2004)

Gallo et al. (2003)

IR-Opt. Properties

Correlations, correlations...

Russell et al. (2006)

Gallo et al. (2003)

Very-High State
 Intermediate State
 Steep-Powerlaw State

1)

σ

σ

đ

4

۵

Miyamoto

Casella et al. (2004)

Powerful ejections

Related to state transitions
 What happens in between those states?
 Black-hole transients are the key

Powerful ejections

Superluminal jetsX-ray jets

Osservatorio Astronomico di Brera

Mi

D

н

ן כן

0

Þ

0 C

0 (†

а 1

N

0

0

σ

A faster jet A different spectrum

Fender, Belloni & Gallo (2004)

Intermediate states & jet ejections

g

۵)

·H

L 0

ወ р

GX 339-4 as template 8

Phenomenology common to many systems

X-ray colors: HID

Hardness-Intensiy Diagran

GX 339-4 (2002/3

Hard state: noise, high-E cutoff, radio emission, compact jet

Osservatorio Astronomico d

Diera

Hard intermediate state: less noise, QPO, high-E cutoff?, radio emission, compact jet

Soft intermediate state: drop in noise, QPO!, high-E cutoff?, no radio emission, jet ejection

Soft state: little noise, weak QPO, no high-E cutoff, no radio emission

Transitions are fast
 Timing is the tracer
 Jet is the output
 High-energy changes
 Not Mdot driven

The High-Energy View

2006)

al

et

loni

Be1

70 keV cutoff disappears

Complications...

Miller et al. (2006)

The SIMS region

Different ringing QPO
 Noise drops
 High-frequency QPO
 Not on reverse trans.?

The non-SIMS regions

Timing properties are continuous from hard to soft Sharp transitions only involve the SIMS region

Energy spectra?

(The non-STMS regions

The non-SIMS regions

The non-SIMS regions

(The non-STMS regions

Continous properties
 Not only frequencies
 Overall noise level
 What connection?

(The non-SIMS regions

Continous properties
 Not only frequencies
 Overall noise level
 What connection?

Comparison with AGN

Merloni, Heinz & Di Matteo (2003)

Comparison with AGN

Global correlations
 Similar behavior?
 Different time scales

Koerding, Jester & Fender (2006)

Comparison with AGN

Global correlations
 Similar behavior?
 Different time scales

Belloni, Fender & Celotti (2006)

Outline

Emission lines Timing Spectra

Spin: Emission lines

Reflection component

Thermal component (disk)
 Hard component (corona, jet)
 Reflection component (disk)

Fluorescent emission lines Iron K_α

Tron emission line

Relativistic distortions Doppler effect **Relativistic aberration** Light-bending 3 Redshift

Ş

Line (Schwarzschild)

XTE T1650-500

Broad skewed line

 $\overline{R}_{in} = 1.24R_g$

a = 0.998

Problems, problems...

Need broad-band
Broad line: continuum
Warm absorbers

Problems, problems...

Need broad-band
Broad line: continuum
Warm absorbers

Need broad-band Ş 8 **Broad line: continuum** 2 Warm absorbers

9 10

8

Spin: continuum Ş Modeling of accretion disk Needs:

Data selection Perfect physical model Additional components Absorption

 $T(R) = \left\{ \frac{3GM\dot{M}}{8\pi R^3 \sigma} \left| 1 - \sqrt{\frac{R_*}{R}} \right| \right\}$

Based on mass Knowledge increase?

High-frequency features
Need physical model
Only guesses

Highest frequency Keplerian?

High-frequency features
Need physical model
Only guesses

Low-frequency features
RPM model
Roughly consistent

For NS binaries

Conclusions