Gamma Ray Bursts: Short vs Long

Bologna – 8 May 2008

G. Ghirlanda

Osservatorio Astronomico Brera giancarlo.ghirlanda@brera.inaf.it

What is a GRB

Prompt emission (<1997)

- energies > 10 keV
- \cdot 1 ms to 1 ks
- high variability

Afterglow emission (>1997)

- energies Opt, IR, Radio
- hours, days, months
- smooth

GRB – Temporal Properties

Photons E>30 keV

GRB – Temporal Properties

Photons E>30 keV

GRB duration distribution is bimodal

Hardness ratio vs duration

M. Ruffert, H.-Th. Janka, 1998

The Fireball model

Transparency

Predictions

Different hosts, distance scale, environment

If Internal/External shocks → similar prompt and afterglow properties

some questions

Q1: how do short GRB spectra look like?

Q2: Are (some) short GRBs the extragal. counterpart of SGR giant flares?

Q3: which is the distance scale to short GRBs?

Q4: what about the prompt and afterglow energetics?

Long GRB (prompt) spectrum

Time integrated spectrum

Fishman & Meegan 1995, Band et al. 1993, Preece et al. 2000, GG et al. 2002

What about Short GRBs?

Short vs Long: average spectra

GG, Ghisellini, Celotti 2004

Short <a>~-0.58+-0.10

Long <a>~-1.05+-0.14

$K-S \rightarrow P=0.04\%$

Long bursts comparison sample from Preece et al. 2000 and GG, Celotti, Ghisellini 2002

Short vs First 2 s of Long

GG, Ghisellini, Celotti 2004

Swift confirms

Sakamoto et al. 2008

Short GRB spectra: a challange for the (standard) emission mechanism

Short GRB spectra: a challange for the (standard) emission mechanism

Short GRBs: spectra

Q1: how do short GRB spectra look like?

Short/Hard - Long/Soft paradigm (based on the HR) revisited: Short GRBs are harder because their low energy spectral component (a) is harder while their peak energy E_{peak} is similar wrt Long GRBs

A larger fraction (wrt to long) of short GRBs violate the OTSSM limit and a larger fraction of short bursts are consistent with Th-BB (or modified BBPL).

Short GRB spectra \rightarrow no high energy tail ?

Short GRB spectra are similar to the first 2 sec of long GRB Soft Gamma ray Repeaters (SGR) and short bursts

Dec. 26 2004 a giant flare form SGR 1806-20

L~10⁴⁷ erg/s

Hurley et al. 2005

Shorts as giant flares of SGR?

SGR giant flares (SGRgf):

- 1. T <= 2 sec (single peaked low variability)
- 2. L = 10^{47} erg/s
- 3. Hard spectrum → Black Body KT=150 keV

If short GRBs are the extragal counterpart of SGRgf

SGRgf should be detected by BATSE

- 1. up to 35 Mpc (z<0.008)
- 2. N=30 yr⁻¹ (60%)

TEST:

- 1. Association with nearby galaxies (<30-50 Mpc) (Nakar 2005 \rightarrow 50%; Popov 2005 \rightarrow N<10⁻³ yr⁻¹)
- 2. spectra + light curves of Short GRBs

BB in Short (15/81)

... but light curves are not single peaked

Short GRBs: spectra

Q2: Are (some) short GRBs the extragal. counterpart of SGR giant flares?

3 short GRB candidates in the BATSE bright sample of 81 short bursts (GG et al. 2006) \rightarrow BB spectrum with KT<100 keV but light curve is multipeaked.

If L \propto (KT)⁴ (and similar to 1806-20) then D~2-5 Mpc but no host candidate within the error box at the same distance.

We can exclude at 4σ Q2 (but there are some caveats).

Redshift

Magliocchetti, GG, Celotti 2004

RC3 galaxy (2300) z<0.007

Short correlate with local galaxies and + with local early type gal.

~10-20% of Batse Short GRBs originate within 100 Mpc

Tanvir et al. 2005

Short GRB hosts

Berger et al. 2005

Gal-Yam et al. 2005

497 short GRBs

448 REFLEX (Boeringher et al. 2004) 484 NORAS (391) (Boeringher et al. 2000)

Z<0.459

•Short GRB-Cluster positive correlation signal

•No corr signal with long

•Short do not trace exactly clusters

•No preference for early types

Ghirlanda, Magliocchetti, Ghisellini, Guzzo, 2006, MNRAS

... let's try with clusters ...

(previous evidences of cluster-GRB correlation e.g. Kolatt & Piran 1996, Struble & Rood 1997 and discussion by Hurley et al. 1999; Gorosabel et al 1997)

(ii) Possible contamination of the S-grb pop by extra-gal SGR (Hurley et al. 2005, but Nakar et al. 2005, Lazzati et al. 2005) (??)

(iii) complex N(L) (e.g. Guetta & Piran 2005, Nakar et al. 2005, Gal-Yam et al. 2005)

PROMPT ENERGETICS and LUMINOSITIES

ENERGETICS: Short vs Long

1) Short GRBs are spectrally similar to the first 2 sec of long GRBs

... in brief ...

2) Long GRBs energetics are 100 > energetics of short GRBs, i.e.

 $\text{Long} \rightarrow 0.1\text{--}1\text{M}_{\text{eq,sun}}$

Short $\rightarrow 0.001-0.01 M_{eq,sun}$

