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Introduction and motivations: the standard model

The last decade has provided us with a hardly doubtable evidence of 
the existence of some accelerating component in the Universe, 
dubbed Dark Energy

Large Scale Structure
[APM, 2dF, SDSS, ...]

Supernovae Ia
[high-z SNS, SN Cosmology Project, ...]

CMB anisotropies
[COBE, WMAP, ...]

Gravitational Lensing
[HST, ...]
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Introduction and motivations: the standard model

The last decade has provided us with a hardly doubtable evidence of 
the existence of some accelerating component in the Universe, 
dubbed Dark Energy

Large Scale Structure
[APM, 2dF, SDSS, ...]

Supernovae Ia
[high-z SNS, SN Cosmology Project, ...]

CMB anisotropies
[COBE, WMAP, ...]

Gravitational Lensing
[HST, ...]

The theoretical effort to cast all these data into a simple and 
consistent picture of the Universe has led to the establishment of a 
STANDARD MODEL...
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ΛCDM
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Why bothering with non-standard models? (I)

The “standard” model is standard for a reason:
economicfits well most of the data easy

So why looking for something more “exotic”?
Easy BUT highly fine-tuned (cosmological issues):

1) Only one number (Λ) but unnaturally small: FINE TUNING

2) Λ domination is very recent: COINCIDENCE

ρΛ

ρpl
∼ 10−123

ρΛ

ρm
< 10−3 for z > 6
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NOT everything fits (astrophysical issues):

4) Cluster Baryon Fraction: SYSTEMATICALLY LOWER THAN EXPECTED
[e.g. Allen et al. 2006 (but see also Giodini et al 2009!!)]

1) Cusp-Core problem: OBSERVED CDM HALOS SHALLOWER THAN NFW
[e.g.  Flores & Primack 1994, Salucci & Burkert 2000, Newman et al. 2009]

Why bothering with non-standard models? (II)

2) Satellite Problem: MANY FEWER SATELLITES OBSERVED THAN PREDICTED
[e.g.  Klypin et al. 1999, Springel 2008, (but see also e.g Maccio’ et al. 2009 MAYBE SOLVED?)]

3) Void Phenomenon: TOO FEW GALAXIES FOUND IN VOIDS
[e.g.  Peebles 2000, Peebles & Nusser 2010]

5) Bulk Flows: TOO LARGE GALAXY VELOCITIES ON LARGE SCALES
[e.g.  Watkins et al. 2008, (but see also Erdogdu & Lahav 2009)]

6) High-z massive clusters: VERY UNLIKELY TO FORM IN ΛCDM
[e.g.  Jee et al. 2009, Rosati et al 2009]

7) The Bullet Cluster:  EXCEEDINGLY RARE OBJECT IN A ΛCDM UNIVERSE
[Lee & Komatsu 2010]

8) The misalignment of halo satellites:  Weaker alignment observed than expected
[Lee 2010; Oguri et al. 2010; MB, Lee & Maccio’ 2011]
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Dynamic and interacting

✔Dynamic DE: a scalar field in a self-interaction potential

{−} No DE domination, 
Coincidence

[Wetterich 1988]

φ̈ + 3Hφ̇ +
dV

dφ
= 0

✔Interacting DE: a scalar field exchanging energy-momentum

φ̈ + 3Hφ̇ +
dV

dφ
=

{+} Scaling solutions, 
No Fine Tuning

κβ(φ)ρc(1− 3wc)
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Dynamic and interacting

✔Dynamic DE: a scalar field in a self-interaction potential

{−} No DE domination, 
Coincidence

[Wetterich 1988]

φ̈ + 3Hφ̇ +
dV

dφ
= 0

✔Interacting DE: a scalar field exchanging energy-momentum

φ̈ + 3Hφ̇ +
dV

dφ
=

{+} Scaling solutions, 
No Fine Tuning

[Wetterich 1995, Amendola 2000]

= − 1
φ̇

[ρ̇c + 3(1 + wc)Hρc]κβ(φ)ρc(1− 3wc)
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Dynamic and interacting

✔Dynamic DE: a scalar field in a self-interaction potential

{−} No DE domination, 
Coincidence

[Wetterich 1988]

φ̈ + 3Hφ̇ +
dV

dφ
= 0

✔Interacting DE: a scalar field exchanging energy-momentum

φ̈ + 3Hφ̇ +
dV

dφ
=

{+} Scaling solutions, 
No Fine Tuning

{++} Scaling solutions with a late-time accelerated attractor: DE domination
[Wetterich 1995, Amendola 2000]

= − 1
φ̇

[ρ̇c + 3(1 + wc)Hρc]κβ(φ)ρc(1− 3wc)
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WEAK coupling regime
|β| < 1/

√
2

+) Late-time accelerated phase
−) Coincidence problem still open

ϕMDE
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Constant coupling: weak or strong?

There are two very different behaviors of interacting DE depending on the 
strength of the interaction:

+) Late-time accelerated scaling
−) No Matter Domination ⇒ No Structures

STRONG coupling regime
|β| > 1/

√
2

WEAK coupling regime
|β| < 1/

√
2

+) Late-time accelerated phase
−) Coincidence problem still open

ϕMDE
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Features of interacting dark energy

1) MODIFIED EXPANSION HISTORY
      due to the early DE component

Hubble functions for different coupled dark energy models
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z
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m
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 M
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CDM (  = 0, c=0)
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RP2 (  = 0.143, c=0.08)
RP3 (  = 0.143, c=0.12)
RP4 (  = 0.143, c=0.16)
RP5 (  = 0.143, c=0.2)

[MB et al. 2010]
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Hubble functions for different coupled dark energy models
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[MB 2010]
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Features of interacting dark energy

2) MASS VARIATION 
      of coupled matter particles

ρ̇c + 3Hρc = −κβ(φ)ρcφ̇⇒ mc ∝ e
−βφ
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Features of interacting dark energy

Mass correction for different coupled dark energy models
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Mass correction for different coupled dark energy models
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Mass Correction for Growing Neutrinos
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2) MASS VARIATION 
      of coupled matter particles

ρ̇c + 3Hρc = −κβ(φ)ρcφ̇⇒ mc ∝ e
−βφ
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Features of interacting dark energy

3) Modified force law 
      of coupled matter particles

�̇vi = βi(φ)
φ̇

M
�vi +

�

j �=i

mj�rij

|�rij |3 G[1 + 2βiβj ]
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Momentum conservation

3) Modified force law 
      of coupled matter particles

�̇vi = βi(φ)
φ̇

M
�vi +

�
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mj�rij

|�rij |3 G[1 + 2βiβj ]
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Momentum conservation Linear approximation: valid only as long as 
                δφ/φ� 1
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Features of interacting dark energy

Momentum conservation Linear approximation: valid only as long as 
                δφ/φ� 1

3) Modified force law 
      of coupled matter particles

�̇vi = βi(φ)
φ̇

M
�vi +

�

j �=i

mj�rij

|�rij |3 G[1 + 2βiβj ]

There are several ways to constrain the magnitude of the coupling based on 
its impact on the expansion history or on the growth of structures:

Bean et al. 2008 (CMB+BAO+SnIa+LSS) |β| � 0.07
La Vacca et al. 2009 (CMB with massive neutrinos) |β| � 0.17
MB & Viel 2010 [1007.3736] (Lyman-α) |β| � 0.15
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Features of interacting dark energy

Momentum conservation Linear approximation: valid only as long as 
                δφ/φ� 1

3) Modified force law 
      of coupled matter particles

�̇vi = βi(φ)
φ̇

M
�vi +

�

j �=i

mj�rij

|�rij |3 G[1 + 2βiβj ]

There are several ways to constrain the magnitude of the coupling based on 
its impact on the expansion history or on the growth of structures:

Bean et al. 2008 (CMB+BAO+SnIa+LSS) |β| � 0.07
La Vacca et al. 2009 (CMB with massive neutrinos) |β| � 0.17
MB & Viel 2010 [1007.3736] (Lyman-α) |β| � 0.15
However all of these bounds were derived for a constant coupling. If β grows 
in time these constraints could be significantly released, allowing for larger 
values of β during STRUCTURE FORMATION
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Assume some generic forms of coupling evolution and find numerical solutions:

β = β0a
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Time dependent couplings [MB 2010 (1005.2188)]

What changes with a time dependent coupling?
There is no general analytic solution. 
Assume some generic forms of coupling evolution and find numerical solutions:

β = β0a
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β = β0e
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Time dependent couplings [MB 2010 (1005.2188)]

What changes with a time dependent coupling?
There is no general analytic solution. 
Assume some generic forms of coupling evolution and find numerical solutions:
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Time dependent couplings [MB 2010 (1005.2188)]

What changes with a time dependent coupling?
There is no general analytic solution. 
Assume some generic forms of coupling evolution and find numerical solutions:
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NO Growing ϕMDE  ⇒ Fine Tuned in the background

Thursday, April 28, 2011



Marco Baldi - simulating dark energy interactions - bologna, 28 IV 2011

Time dependent couplings [MB 2010 (1005.2188)]

What changes with a time dependent coupling?
There is no general analytic solution. 
Assume some generic forms of coupling evolution and find numerical solutions:
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NO Growing ϕMDE  ⇒ Fine Tuned in the background

Growing ϕMDE ⇒ NOT fine tuned
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Time dependent effects on sructure formation
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Time dependent effects on sructure formation

Friction term
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Time dependent effects on sructure formation
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Time dependent effects on sructure formation

Friction term

  
z + 1

0.00

0.05

0.10

0.15

0.20

2 
 c(

 ) 
x

1 10

EXP010a2
EXP015a3
EXP010e2
EXP010e3
EXP015e3

RP5 in Baldi et al. (2010)

c)

Coupling function

  
z + 1

0.0

0.2

0.4

0.6

0.8

 c(
 )

1 10

  

EXP010a2
EXP015a3
EXP010e2
EXP010e3
EXP015e3

RP5 in Baldi et al. (2010)

a)

G̃ ∝ 1 + 2β2(φ)f ∝ β(φ)φ̇

�̇vi = βi(φ)
φ̇

M
�vi +

�

j �=i

mj�rij

|�rij |3 G[1 + 2βiβj ]

Might be strongly suppressed Effectively growing gravitational constant
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GADGET-3

N-body implementation
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GADGET-3

f�v

f�v

G̃

G

GH(β)

mc(t)

mc(t)

mb

mb

N-body implementation

Coupling function

  
z + 1

0.0

0.2

0.4

0.6

0.8

 c(
 )

1 10

  

EXP010a2
EXP015a3
EXP010e2
EXP010e3
EXP015e3

RP5 in Baldi et al. (2010)

a)

G̃ ∝ 1 + 2β2(φ)

Friction term

  
z + 1

0.00

0.05

0.10

0.15

0.20

2 
 c(

 ) 
x

1 10

EXP010a2
EXP015a3
EXP010e2
EXP010e3
EXP015e3

RP5 in Baldi et al. (2010)

c)

f ∝ β(φ)φ̇

Thursday, April 28, 2011



Marco Baldi - simulating dark energy interactions - bologna, 28 IV 2011

GADGET-3
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f�v
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GH(β)

mc(t)

mc(t)

mb

mb

Advantages of the linear approximation algorithm:
- No need to solve for the spatial SF distribution
- Same Poisson solver as for standard gravity
- Moderate increase of computational time (~2x)

N-body implementation
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Formation
Weak coupling regime: Coupled Quintessence
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Results:
The effects on Structure 

Formation
Weak coupling regime: Coupled Quintessence

A DE scalar field coupled with Cold Dark Matter particles.
Baryons are uncoupled

ρc = ρCDM
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Results:
The effects on Structure 

Formation
Weak coupling regime: Coupled Quintessence

A DE scalar field coupled with Cold Dark Matter particles.
Baryons are uncoupled

ρc = ρCDM β ∼ O(1)⇒ 1− 3wc = 1
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Results:
The effects on Structure 

Formation
Weak coupling regime: Coupled Quintessence

A DE scalar field coupled with Cold Dark Matter particles.
Baryons are uncoupled

ρc = ρCDM β ∼ O(1)

mCDM(z = 0) < mCDM(z > 0)

⇒ 1− 3wc = 1
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Results (I): halo mass function and cluster counts

Number counts in coupled dark energy models: CONSTANT and 
VARIABLE couplings [MB & V. Pettorino 2010]

The recent detection of very massive clusters at high redshift has been claimed as 
a possible challenge to the CDM cosmology [e.g. Jee et al 2009]
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Results (I): halo mass function and cluster counts

Number counts in coupled dark energy models: CONSTANT and 
VARIABLE couplings [MB & V. Pettorino 2010]

The recent detection of very massive clusters at high redshift has been claimed as 
a possible challenge to the CDM cosmology [e.g. Jee et al 2009]

Maybe non gaussianity? 
[Jimenez&Verde (2009); 
Cayon, Gordon, Silk (1006.1950); 
Hoyle, Verde, Jimenez (1009.3884)]
NEED A LARGE fNL
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Results (I): halo mass function and cluster counts

Number counts in coupled dark energy models: CONSTANT and 
VARIABLE couplings [MB & V. Pettorino 2010]

The recent detection of very massive clusters at high redshift has been claimed as 
a possible challenge to the CDM cosmology [e.g. Jee et al 2009]

Maybe non gaussianity? 
[Jimenez&Verde (2009); 
Cayon, Gordon, Silk (1006.1950); 
Hoyle, Verde, Jimenez (1009.3884)]
NEED A LARGE fNL

INTERACTING DE:
The extra force acting between CDM 
particles and the extra friction term 
determine a faster growth of density 
perturbations.

The number density of halos above a 
given mass M at any redshift z is 
correspondingly enhanced. 
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Results (II): halo density profiles

The first hydrodynamical high-resolution N-body simulations for a weak 
DE-CDM CONSTANT interaction: [MB et al., MNRAS 2010]
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Results (II): halo density profiles

The first hydrodynamical high-resolution N-body simulations for a weak 
DE-CDM CONSTANT interaction: [MB et al., MNRAS 2010]

DENSITY PROFILES

The combination of the friction 
term and of the mass variation of 
(coupled) CDM particles affects 
the virial equiibrium of collapsed 
objects.

The two effects induce a global 
increase of the total energy of the 
systems which slightly expand. This 
produces shallower density 
profiles in the inner regions of 
CDM halos. Might provide a way 
out of the “cusp-core” problem

Halo Density profiles for CDM and baryons for Group nr. 0
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The first hydrodynamical high-resolution N-body simulations for a weak 
DE-CDM VARIABLE interaction: [MB MNRAS 2010 (1005.2188)]

DENSITY PROFILES

The combination of the friction 
term and of the mass variation of 
(coupled) CDM particles affects 
the virial equilibrium of collapsed 
objects.... BUT:

If the coupling grows in time, 
there is also a decrease of the 
gravitational potential energy of 
halos. Two effects are competing, 
and can determine both shallower  
and steeper density profiles 
depending on the existence of a 
“Growing ϕMDE” phase.

Density profiles for Group nr. 6
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The first hydrodynamical high-resolution N-body simulations for a weak 
DE-CDM VARIABLE interaction: [MB 2010]

BARYON FRACTION

The different dynamics of 
(uncoupled) baryons and 
(coupled) CDM leads to a linear 
and nonlinear bias between the 
two species

As a consequence, the baryon 
fraction of large halos is reduced 
in proportion to the coupling 
strength.
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Results (III): baryon fraction
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Results (IV): subhalos misalignment
[MB, J. Lee, A. Maccio’, APJ 2011]
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Results (IV): subhalos misalignment

ΛCDM simulations seem to show a strong 
alignment between galaxy and CDM 
distributions in clusters [Lee APJ 2010]

[MB, J. Lee, A. Maccio’, APJ 2011]
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Results (IV): subhalos misalignment

ΛCDM simulations seem to show a strong 
alignment between galaxy and CDM 
distributions in clusters [Lee APJ 2010]

However, recent observations (still a low 
number of objects, though) have shown a 
lower degree of alignment [Oguri et al. 
2010]

[MB, J. Lee, A. Maccio’, APJ 2011]
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Results (IV): subhalos misalignment

ΛCDM simulations seem to show a strong 
alignment between galaxy and CDM 
distributions in clusters [Lee APJ 2010]

However, recent observations (still a low 
number of objects, though) have shown a 
lower degree of alignment [Oguri et al. 
2010]

By means of high-resolution N-body 
simulations we have shown that coupled 
DE cosmologies predict a weaker alignment 
between galaxy and CDM distributions 
[MB, J. Lee, A. Maccio’ APJ 2011]

[MB, J. Lee, A. Maccio’, APJ 2011]
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Results (IV): subhalos misalignment

ΛCDM simulations seem to show a strong 
alignment between galaxy and CDM 
distributions in clusters [Lee APJ 2010]

However, recent observations (still a low 
number of objects, though) have shown a 
lower degree of alignment [Oguri et al. 
2010]

By means of high-resolution N-body 
simulations we have shown that coupled 
DE cosmologies predict a weaker alignment 
between galaxy and CDM distributions 
[MB, J. Lee, A. Maccio’ APJ 2011]

Need more data to increase statistical significance

[MB, J. Lee, A. Maccio’, APJ 2011]
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A DE scalar field coupled with massive neutrinos.
Baryons and CDM are uncoupled

When neutrinos become non-relativistic the scalar field 
stops and “becomes” a cosmological constant: 
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Results:
The effects on Structure 

Formation
Strong coupling regime: Growing Neutrinos

A DE scalar field coupled with massive neutrinos.
Baryons and CDM are uncoupled

When neutrinos become non-relativistic the scalar field 
stops and “becomes” a cosmological constant: 

solution of the coincidence problem

ρc = ρν β < 0

PRELIM
IN

ARY

⇒ 1− 3wc ={0 rel. regime

1 nonrel. regime

Thursday, April 28, 2011



Marco Baldi - simulating dark energy interactions - bologna, 28 IV 2011

Results:
The effects on Structure 

Formation
Strong coupling regime: Growing Neutrinos

A DE scalar field coupled with massive neutrinos.
Baryons and CDM are uncoupled

When neutrinos become non-relativistic the scalar field 
stops and “becomes” a cosmological constant: 

solution of the coincidence problem

ρc = ρν β < 0 |β| ∼ 50

PRELIM
IN

ARY

⇒ 1− 3wc ={0 rel. regime

1 nonrel. regime
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Results:
The effects on Structure 

Formation
Strong coupling regime: Growing Neutrinos

A DE scalar field coupled with massive neutrinos.
Baryons and CDM are uncoupled

When neutrinos become non-relativistic the scalar field 
stops and “becomes” a cosmological constant: 

solution of the coincidence problem

ρc = ρν β < 0 |β| ∼ 50

mν(z = 0)� mν(z > 0)

PRELIM
IN

ARY

⇒ 1− 3wc ={0 rel. regime

1 nonrel. regime
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ARY The Growing Neutrino scenario

in pills...

1) At high z neutrinos are fully relativistic: the coupling is inactive

3) At  redshift znr neutrinos become nonrelativistic: the coupling gets active

5) After znr the mass of neutrinos grows exponentially and neutrinos can be 
treated as Cold Dark Matter particles with a STRONG coupling to DE

2) At high z neutrinos are completely homogeneous (due to free streaming)
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PRELIM
IN

ARY The Growing Neutrino scenario

in pills...

1) At high z neutrinos are fully relativistic: the coupling is inactive
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3) At  redshift znr neutrinos become nonrelativistic: the coupling gets active

5) After znr the mass of neutrinos grows exponentially and neutrinos can be 
treated as Cold Dark Matter particles with a STRONG coupling to DE

2) At high z neutrinos are completely homogeneous (due to free streaming)

6) When neutrinos become nonrelativistic, they start falling in the CDM 
potential wells of cosmic large scale structures

7) As soon as neutrinos develop inhomogeneities, the scalar fifth-force (5000 
times larger than gravity) drives a fast growth of LS neutrino structures

8) Neutrino structures quickly become nonlinear (as predicted by linear 
perturbations codes, see e.g. Mota et al 2008), need of N-body sims...

4) The strong coupling to neutrinos stops the DE scalar field, that “becomes” 
a cosmological constant: neutrinos becoming nonrelativistic is the trigger!
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The SF oscillations determine oscillations of the neutrino 
mass, which in turn determine oscillations of neutrino 
velocities and an alternation of scalar friction and drag
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A lot of work expected for the near future in the 
non-standard cosmologies simulations business.

Thursday, April 28, 2011



Marco Baldi - simulating dark energy interactions - bologna, 28 IV 2011

2× 10243 particles
CoDECS

1Gpc3h−3 Volume

ΛCDM
z = 0

Thursday, April 28, 2011



Marco Baldi - simulating dark energy interactions - bologna, 28 IV 2011

2× 10243 particles
CoDECS

1Gpc3h−3 Volume

ΛCDM
z = 0

Thursday, April 28, 2011


