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The case for dark matter

Most economical
explanation of:

I The rate of
expansion of the
universe.

I The formation of
large scale
structure.

I The dynamics of
galaxies, clusters,
. . .

Expected in natural extensions of the SM.
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A few more oddities in the data

I There is almost no
anti-matter in the
universe.

I The energy density
in matter and dark
energy are
comparable.



An example: WIMPs

Similar to a heavy neutrino, mχ ≈ 100 GeV, weak-scale
interactions produce observed abundance from thermal
decoupling:

⇒< σv >≈ 3× 10−26 cm3 s−1

The same interactions make it potentially detectable:
I χχ→ γγ, π0, e±, . . .
I χN → χN

Other examples include axions, MeV particles, . . .
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Beyond the Standard Model Particles

The Standard Model of particle physics explains all the
available data at colliders. However:

I Has a severe fine-tuning problem in the Higgs sector.
I Does not have a dark matter candidate.
I Cannot explain baryogenesis.

But, theorists have come up with (quite a few different)
extensions that address this issues. Supersymmetry, extra
dimensions, . . .
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Supersymmetry basics

The hierarchy problem is solved if there if each particle has a
replica with different statistics.

The simplest extension, MSSM, contains a copy for each SM
particle, and five higgs bosons: h,H,A,H±. And over a
hundred parameters!
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Other features

Proton stability is an accident in the SM, but must be enforced
by R-parity in the MSSM. As a consequence, the LSP is stable

⇒ Dark Matter candidate!

I The conditions for baryogenesis could be met at the
electroweak phase-transition.

I Coupling constants merge at the GUT scale.
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The neutralino

Often work in a simplified framework cMSSM:
M0,M1/2,A, tanβ, sign(µ).

I The LSP can be a linear combination of super-partners of
gauge and higgs bosons, called the neutralino.

I In this framework, mχ & 50 GeV.

On a less restricted framework the neutralino could even be
massless.
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How about light WIMPs?
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Consider models other than MSSM, probably less natural.
I WIMPs below mχ . 10 GeV affect energy transport in the

Sun.
I Super-weakly interacting particles affect SN cooling rates

for mχ1 GeV.
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Dark photons in hidden sectors

1 10 100 103

mA′ [MeV]

10−11

10−9

10−7

10−5

10−3

0.1

ε

SN

E137

E141

E774
Υ(3S)

aµ
ae



Indirect detection

χχ→ γγ, π0, e±, . . .

Flux =
< σv >
4πm2

dm

dNγ

dEγ︸ ︷︷ ︸
Number of SM particles

×
∫ ∞

0
ρ2(r)dl︸ ︷︷ ︸

Amount of DM2

I Astrophysical factor suggests looking at GC, dwarf
spheroidals, . . .

I Photons and neutrinos point back to the source, while
charged particles diffuse.



Indirect detection

χχ→ γγ, π0, e±, . . .

Flux =
< σv >
4πm2

dm

dNγ

dEγ︸ ︷︷ ︸
Number of SM particles

×
∫ ∞

0
ρ2(r)dl︸ ︷︷ ︸

Amount of DM2

I Astrophysical factor suggests looking at GC, dwarf
spheroidals, . . .

I Photons and neutrinos point back to the source, while
charged particles diffuse.



The distribution of DM: simulations

1 billion 4,100 M� particles. 0.5 kpc in the host halo.



The distribution of DM: observations

Jeans’ equation shows that M/L ∼ 1000. Clean systems.
Evans, FF, Sarkar 04
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The annihilation cross-section

Annihilations in the halo are non-relativistic, v ≈ 10−3.

σv = a + bv2 + . . .

The amplitude is analytical for k → 0

M∝
∫

eikxVBorn(x)

Including factors of k lY m
l in a partial wave expansion, σ ∝ k2l−1
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More complicated velocity dependence

If there are new light particles mediating long-range forces
between the dark matter, an enhancement occurs at low
velocities:

σ → σ × πα

v

Enhancements at low velocities, v ∼ 10−3, different than at
decoupling, v ∼ 1.
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What went in calculating the flux?

The averaged cross-section

〈σv〉 → S(v)〈σv〉

But, the flux is
Φ = Rate × vrel

We have to average this, using the dark matter velocity
distribution.
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How should we calculate the fluxes?

Flux ∝
∫

dvreldlfpair (vrel)σvrel

Where,

fsp(~v1)fsp(~v2)d~v1d~v2 = fpair(~vcm, ~vrel)d~vcmd~vrel. (1)

No difference for a Maxwell-Boltzmann distribution.
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Obtaining the phase-space distribution

Assume that dark matter satisfies the colisionless Boltzmann
equation,

df
dt

= 0

Very hard to solve! Only a few exact solutions known, found
finding integrals of motion (singular isothermal sphere,
Hernquist, Jaffe, . . . ).
Taking velocity moments we obtain the Jeans’ equation:

v2
c =

GM(r)

r
= −v̄2

r

(
d log ν
d log r

+
d log v̄2

r

d log r
+ 2β

)
.

Necessary condition, useful to obtain density profiles from
observational data.
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Eddington’s formula

Gives the phase space distribution, if we know the density
profile:

f (E) =
1√
8π2

∫ E
0

dΨ√
E −Ψ

d2ρ

dΨ2 . (2)

Choose profile, 1/r/(r + rs)2, exp(−(r/rs)1/N), 1/(r2 + r2
c );

generate 103 velocities at each sampled distance.
Numerically, we change integration variables to r , and
precalculate the potential on a grid.
Check that ρ(r) ≡

∫
d3v f (E).
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Results

I We find that non-gaussianity can usually, but not always,
be neglected. Jeans’ treatment is good enough.

I Enhancements up to a factor of 40, compared to standard
calculation.

I Will have to re-evaluate constraints from the Galactic
Centre.



Conclusions

I Recent results at the LHC constrain a sizable part of
neutralino phase space, but don’t tell us much about the
nature of dark matter.

I Gamma-ray and neutrino fluxes might depend on the
velocity distribution, which might deviate from the naive
Maxwell-Boltzmann approximation.

I Constraints on Sommerfeld enhanced models from IC,
synchroton or diffuse backgrounds have to be re-evaluated.

I The velocity distribution also affects direct detection rates.
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