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The case for dark matter

Most economical
explanation of:

» The rate of
expansion of the
universe.

» The formation of
large scale
structure.

» The dynamics of
galaxies, clusters,
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The case for dark matter

Most economical
1E0657-56 explanation of:

» The rate of
expansion of the
universe.

» The formation of
large scale
structure.

» The dynamics of

Chandra 0.5 Msec image 5 = galaXieS, C|UStel’S,

Expected in natural extensions of the SM.
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A few more oddities in the data
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» There is almost no
anti-matter in the
universe.

» The energy density
in matter and dark
energy are
comparable.
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An example: WIMPs

Similar to a heavy neutrino, m, ~ 100 GeV, weak-scale
interactions produce observed abundance from thermal
decoupling:

=<ov>x~3x10®cmds!
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An example: WIMPs

Similar to a heavy neutrino, m, ~ 100 GeV, weak-scale
interactions produce observed abundance from thermal

decoupling:

=< oVv>~3x10® cmds!

The same interactions make it potentially detectable:

> xx — vy, 70, €%, ...
» xN — xN
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An example: WIMPs

Similar to a heavy neutrino, m, ~ 100 GeV, weak-scale
interactions produce observed abundance from thermal

decoupling:

=< oVv>~3x10® cmds!

The same interactions make it potentially detectable:
> xx = vy, ©°, et, ...
» xN — xN

Other examples include axions, MeV particles, ...
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Beyond the Standard Model Particles

The Standard Model of particle physics explains all the
available data at colliders. However:

» Has a severe fine-tuning problem in the Higgs sector.
» Does not have a dark matter candidate.
» Cannot explain baryogenesis.
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Beyond the Standard Model Particles

The Standard Model of particle physics explains all the
available data at colliders. However:

» Has a severe fine-tuning problem in the Higgs sector.
» Does not have a dark matter candidate.
» Cannot explain baryogenesis.

But, theorists have come up with (quite a few different)
extensions that address this issues. Supersymmetry, extra
dimensions, ...
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Supersymmetry basics

The hierarchy problem is solved if there if each particle has a
replica with different statistics.
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The hierarchy problem is solved if there if each particle has a
replica with different statistics.

The simplest extension, MSSM, contains a copy for each SM
particle, and five higgs bosons: h, H, A, H*.
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Supersymmetry basics

The hierarchy problem is solved if there if each particle has a
replica with different statistics.

The simplest extension, MSSM, contains a copy for each SM
particle, and five higgs bosons: h, H, A, H=. And over a
hundred parameters!
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Other features

Proton stability is an accident in the SM, but must be enforced
by R-parity in the MSSM. As a consequence, the LSP is stable

= Dark Matter candidate!
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Other features

Proton stability is an accident in the SM, but must be enforced
by R-parity in the MSSM. As a consequence, the LSP is stable

= Dark Matter candidate!

» The conditions for baryogenesis could be met at the
electroweak phase-transition.
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Other features

Proton stability is an accident in the SM, but must be enforced
by R-parity in the MSSM. As a consequence, the LSP is stable

= Dark Matter candidate!

» The conditions for baryogenesis could be met at the
electroweak phase-transition.

» Coupling constants merge at the GUT scale.
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The neutralino

Often work in a simplified framework cMSSM:
MO» M1/21 A: tan 67 SIgn(:u‘)

» The LSP can be a linear combination of super-partners of
gauge and higgs bosons, called the neutralino.

&5 Washington University in St Louis



The neutralino

Often work in a simplified framework cMSSM:
MO» M1/21 A: tan 67 SIgn(:u‘)

» The LSP can be a linear combination of super-partners of
gauge and higgs bosons, called the neutralino.

> In this framework, m, = 50 GeV.

&5 Washington University in St Louis



The neutralino

Often work in a simplified framework cMSSM:
MO» M1/21 A: tan 67 SIgn(:u‘)

» The LSP can be a linear combination of super-partners of
gauge and higgs bosons, called the neutralino.

> In this framework, m, = 50 GeV.

On a less restricted framework the neutralino could even be
massless.
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What have we seen so far?
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What have we seen so far?
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What have we seen so far?

QATLAS
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What have we seen so far?

4 ATLAS Simulation Preliminary
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What have we seen so far?

Events / 5 GeV

LN B B B B I S
12 ]

Data 2011,\'s =7 TeV, J Ldt=4.8fb

10|~ —4— Data ATLAS | Preliminary

[ m,=130 GeV, 1xSM

8

[:] Total background
6 H-zZ" a4l
4
2

TT T [T T T [T T T[T T T[T T T [ TTT
I I I I I I

A I B S B e
‘POO 120 140 160 180

L | I N
200 220 240
m, [GeV]

&5 Washington University in St Louis



What have we seen so far?
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What have we seen so far?
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What have we not seen?

a)
~
S
q = quark U = muon
§ = squark V = neutrino
g = anti-quark X} = chargino
3 = anti-squark X9 = neutralino

(lightest super-partner)

http://atlas.ch
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What have we not seen?

MSUGRA/CMSSM: tanfi = 10, A = 0, u=0
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What have we not seen?

Bertone et al. (2011)
I )

cMSSM, Flat Prior
Null seacrh at LHC
Current LHC
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How about light WIMPs?
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How about light WIMPs?
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How about light WIMPs?

Consider models other than MSSM, probably less natural.
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How about light WIMPs?

Consider models other than MSSM, probably less natural.

» WIMPs below m, < 10 GeV affect energy transport in the
Sun.

» Super-weakly interacting particles affect SN cooling rates
for m,1 GeV.
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Dark photons in hidden sectors
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Indirect detection

XX = 17, 7, €5, ...
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Indirect detection

XX = 77, 70, €.

<ov>dN °
Flux = ~7V=9% / A(r)dl
47dem dEfy 0

— —
Number of SM particles ~ Amount of DM?

» Astrophysical factor suggests looking at GC, dwarf
spheroidals, ...

» Photons and neutrinos point back to the source, while
charged particles diffuse.
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The distribution of DM: simulations

1 billion 4,100 Mg, particles. 0.5 kpc in the host halo.
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The distribution of DM: observations

Jeans’ equation shows that M/L ~ 1000. Clean systems.

Evans, FF, Sarkar 04
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Fermi

Upper limits, bb channel
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The annihilation cross-section

Annihilations in the halo are non-relativistic, v ~ 10~3.

ov=a+bv®+...
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The annihilation cross-section

Annihilations in the halo are non-relativistic, v ~ 10~3.

ov=a+bv®+...

The amplitude is analytical for kK — 0
M o / R Vgorm(X)

Including factors of k' Y/™ in a partial wave expansion, o oc k%'~
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More complicated velocity dependence

If there are new light particles mediating long-range forces
between the dark matter, an enhancement occurs at low
velocities:

yyes
O — 0 X —
4
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More complicated velocity dependence

If there are new light particles mediating long-range forces
between the dark matter, an enhancement occurs at low

velocities:
T

O — 0 X —
4

Enhancements at low velocities, v ~ 1073, different than at
decoupling, v ~ 1.

Washington University in St.Louis



Dwarfs enhanced

Positron Ratio
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Dwarfs enhanced

Lattanzi & Silk
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Dwarfs enhanced

Lattanzi & Silk

@%slnngtonUrﬂversinStInms

=} = E 9DacC



What went in calculating the flux?

The averaged cross-section

(ov) = S(v){ov)
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What went in calculating the flux?

The averaged cross-section
(ov) = S(v){ov)

But, the flux is
& = Rate X Vg
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What went in calculating the flux?

The averaged cross-section
(ov) = S(v){ov)

But, the flux is
& = Rate X Vg

We have to average this, using the dark matter velocity
distribution.
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Which velocity distribution?

Since DM is assumed to be heavy, use Maxwell-Boltzmann?

Halo restframe Earth restframe (Summer)
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Which velocity distribution?

Since DM is assumed to be heavy, use Maxwell-Boltzmann?

Halo restframe Earth restframe (Summer)
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How should we calculate the fluxes?

FIUX X /dVreldlfpair(Vre[)UVrel
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How should we calculate the fluxes?

FIUX X /dVreldlfpair(Vre/)UVrel

Where,

fsp(v1 )fsp(VZ)dV1 dVZ - fpair(vcmv Vrel)dvcmdvrel- (1 )
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How should we calculate the fluxes?

FIUX XX /dVreldlfpair(Vre/)UVrel

Where,
fsp(v1 )fsp(VZ)dV1 dVZ - fpair(vcmv Vrel)dvcmdvrel- (1 )

No difference for a Maxwell-Boltzmann distribution.
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Obtaining the phase-space distribution

Assume that dark matter satisfies the colisionless Boltzmann
equation,
df
=
Very hard to solve! Only a few exact solutions known, found
finding integrals of motion (singular isothermal sphere,
Hernquist, Jaffe, ...).

0
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Obtaining the phase-space distribution

Assume that dark matter satisfies the colisionless Boltzmann
equation,
df
=
Very hard to solve! Only a few exact solutions known, found
finding integrals of motion (singular isothermal sphere,
Hernquist, Jaffe, ...).
Taking velocity moments we obtain the Jeans’ equation:

GM(r) - (dlogv  dlog v?
2 _ _ B2 r
Vo=~ Vr(dlogr dlogr 26

0

Necessary condition, useful to obtain density profiles from
observational data.
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Eddington’s formula

Gives the phase space distribution, if we know the density

profile:
f(g):1/gdwdzp‘ (2)
V8r2 Jo VE —Wwdw2
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Eddington’s formula

Gives the phase space distribution, if we know the density

profile:
f(g):1/gdwdzp‘ (2)
V8r2 Jo VE —Wwdw2

Choose profile, 1/r/(r + rs)?, exp(—(r/rs)" /N), 1/(r? + r2);
generate 10° velocities at each sampled distance.
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Eddington’s formula

Gives the phase space distribution, if we know the density

profile:
1 & U 2
f(£) = / did—pz. )

V8r2 Jo VE-—wdV
Choose profile, 1/r/(r + rs)?, exp(—(r/rs)" /N), 1/(r? + r2);
generate 10° velocities at each sampled distance.
Numerically, we change integration variables to r, and
precalculate the potential on a grid.
Check that p(r) = [ d3v{(E).
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Results

» We find that non-gaussianity can usually, but not always,
be neglected. Jeans’ treatment is good enough.

» Enhancements up to a factor of 40, compared to standard
calculation.

» Will have to re-evaluate constraints from the Galactic
Centre.
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Conclusions

» Recent results at the LHC constrain a sizable part of
neutralino phase space, but don’t tell us much about the
nature of dark matter.

» Gamma-ray and neutrino fluxes might depend on the
velocity distribution, which might deviate from the naive
Maxwell-Boltzmann approximation.

» Constraints on Sommerfeld enhanced models from IC,
synchroton or diffuse backgrounds have to be re-evaluated.

» The velocity distribution also affects direct detection rates.
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