Thermohaline mixing and rotation-induced mixing in low- and intermediate-mass stars

Nadège Lagarde

Corinne Charbonnel

Geneva observatory

Introduction

NGC 3242

> NGC 3242 has an abundance of ³He as predicted by classical models.

Galactic chemical evolution shows that only ≈10% or less of the low-mass stars were actually releasing ³He as predicted by the classical stellar theory (Tosi 1998, 2000; Palla et al. 2000; Romano et al. 2003)

> The majority of low-mass stars experiences deep mixing in red giant phase.

II. Observational evidence for 2nd mixing episode on RGB

III. Transport processes :

- Rotation-induced mixing
- > Thermohaline mixing

IV. Comparison of models predictions with observations > ³He case

Mass fraction 100 x X(³He, ¹²C) 1000 x X(¹³C) 50 x X(¹⁴N, ¹⁶O)

Iben (1967)

Mass fraction 100 x X(³He, ¹²C) 1000 x X(¹³C) 50 x X(¹⁴N, ¹⁶O) Predictions at the 1dup : ¹²C/¹³C, Li, ¹²C ↘ ¹⁴N, ³He, ¹³C ↗ ¹⁶O and the heavier elements stay constant

 L_{BUMP} = The hydrogen burning shell crosses the discontinuity left behind by the 1DUP.

-> decrease of molecular weight -> luminosity decreases

-> Hydrogen continues to burn in region with constant μ -> Luminosity

increases

Classical predictions : nucleosynthesis

Mass fraction 100 x X(³He, ¹²C) 1000 x X(¹³C) 50 x X(¹⁴N, ¹⁶O)

Connection to abundance anomalies in RGBs

Mass fraction 100 x X(³He, ¹²C) 1000 x X(¹³C) 50 x X(¹⁴N, ¹⁶O)

II- Observational evidence for 2nd mixing on RGB

Classical predictions : 1st dredge-up

Field stars with Π Hipparcos

Charbonnel, Brown & Wallerstein (98)

Signature of "extra-mixing" at the L bump

RGB bump

Field stars with Π Hipparcos

Charbonnel, Brown & Wallerstein (98)

Signature of "extra-mixing" at the L bump

Lind, Primas, Charbonnel, Grundahl, Asplund (2009)

Observations

III. Transport processes

Rotation-induced mixing

Zahn (92) and Maeder & Zahn (98)

Transport of angular momentum (advection and diffusion)

$$\rho \frac{\mathrm{d} \left(r^{2} \Omega\right)}{\mathrm{d} t} = \frac{1}{5r^{2}} \frac{\partial}{\partial r} \left(\rho r^{4} \Omega U r\right) + \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{4} \rho \nu_{v} \frac{\partial \Omega}{\partial r}\right)$$
Meridional circulation (Shear)
turbulence

Chemical species transport (diffusion)

$$\rho \frac{\mathrm{d}\overline{c_i}}{\mathrm{d}t} = \dot{c_i} + \frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 \rho U_{\mathrm{diff}} \overline{c_i} \right] + \frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 \rho \left(D_{\mathrm{eff}} + D_v \right) \frac{\partial \overline{c_i}}{\partial r} \right]$$
Nuclear Atomic diffusion Meridional circulation and shear turbulence

Open cluster IC 4651 : A(Li) & A(Be)

Smiljanic , R.; Pasquini, L.; Charbonnel, C.; Lagarde, N. (2009)

Open cluster IC 4651 : A(Li) & A(Be)

Smiljanic , R.; Pasquini, L.; Charbonnel, C.; Lagarde, N. (2009)

Rotation-induced mixing

Abundances profiles at the end of Main sequence.

Rotation-induced mixing

The post dredge-up ${}^{12}C/{}^{13}C$ ratios is lower than in non-rotating case.

More ³He is brought into the stellar envelope than in non rotating case.

Open cluster IC 4651 : A(Li) & A(Be)

Smiljanic , R.; Pasquini, L.; Charbonnel, C.; Lagarde, N. (2009)

Rotation-induced mixing on RGB

Effects of rotation on RGB

III.b Thermohaline mixing

Mean molecular weight (μ) inversion

1.5995

$$\nabla_{\mu} = \frac{d\ln\mu}{d\ln P} < 0$$

Eggleton et al. (06), Kippenhahn (80), Ulrich (72)

Ulrich (72) : this reaction produces more particles per units mass than it started from

Fig. 3. The profile of reciprocal molecular weight $(1/\mu)$, as a function of mass in solar units, at three successive times (red, then green 2 million years later, then blue 2 million years later still).

Eggleton et al. : 3D hydrodynamic code to model a low-mass star at the RGB tip

The inverse μ -gradient builds up Such a μ -profile leads to efficient mixing.

The instability responsible for that mixing is the Rayleigh-Taylor instability => convective instability

Thermohaline circulation

warm salty water

> refers to the part of the large-scale ocean circulation

 The density of ocean water is controlled by temperature (thermo-) and salinity (- haline), and the circulation driven by density differences is called the thermohaline circulation
 Thermohaline mixing takes a form of salt fingers

cool fresh water

Thermohaline mixing

Reaction ³He (³He, 2p) ⁴He

 \diamond Thermohaline mixing

$$\nabla_{\mu} = \frac{d\ln\mu}{d\ln P} < 0$$

Eggleton et al. (06), Kippenhahn (80), Ulrich (72)

Salt Fingers

Hot, salty water overlying cool, fresh water ultimately becomes unstable, forming salt-fingers.

Krishnamurti (03)

 α =aspect ratio (length / width) of the fingers ~ 5

- Stern (60)

- C-rich material deposited at the surface of a star in a mass transferring binary (Stothers & Simon 69; Stancliffe et al. 07)

- Accretion of heavy elements during planet formation (Vauclair 04)

 $C_t = \frac{8}{2}\pi^2 \alpha^2$

- Iron accumulation in A-F stars (Théado et al. 09)

Where and How this mixing takes place in RGB stars ??

During 1DUP, convective envelope : -> homogemises the stars down to very deep regions and builds a very steep gradient of molecular weight -> dillute chemical species in these regions

BUMP

³He+³He->⁴He+2p decreases the molecular weight

-> gradient of µ becomes negative -> thermohaline instability develops between the ³He burning region and CE

Thermohaline mixing "connects" HBS and CE

-> changes in the surface abundances

Diffusion coefficients : Rotation & Thermohaline

Dthc is 5 to 6 orders of magnitude higher than Drot, and it is independent of the initial rotation velocity on th ZAMS.

IV. Comparison of models predictions with observations

Standard predictions $(1.25M_{\odot})/M67 (M_{TO}=1.2M_{\odot})$

Models (1.25 M_{\odot}) at different velocities

Charbonnel & Lagarde (2010)

 $\rm Log(L/L_{\odot})$

$^{12}C/^{13}C$ as a function of M_{TO}

al. (2010)

$^{12}C/^{13}C$ as a function of M_{TO} 30 standard Thermohaline Models: - RGB tip mixing only after the 2nd DUP 20 $th.+V_{zAMS}=110$ **Observations** : 13C / 13C $th.+V_{ZAMS}=250$ **RGB** star Clump star $th.+V_{zAMS}=300$ 00 early-AGB star doubtful 10 * Observations : $th.+V_{z_{AMS}}=0$ evolutionary status Smiljanic et al. (2009); Gilroy (1989); 4 Thermohaline mixing Gilroy & Brown (1991); and rotation Mikolaitis et Charbonnel & Lagarde (2010) al. (2010)

$^{12}C/^{13}C$ in planetary nebulae

Sample of planetary nebulae : Palla et al. 2000

Lithium destruction on RGB

Observations from Charbonnel et al. (in prep.): O Exact value

 ∇ Upper limits

Li production during TP-AGB

Standard evolution of ³He

Surface abundance of ${}^{3}\text{He}$

Lagarde et al. (en prep.)

³He with thermohaline mixing

Lagarde et al. (2011, in prep.)

Standard yields of ³He

Lagarde et al. (en prep.)

The stubborn PNe NGC 3242 and J 320

What prevents thermohaline mixing in ~ 5 % of low-mass stars ?

Charbonnel & Zahn (2007b) proposed that thermohaline mixing may be inhibited by a fossil magnetic field in a large fraction of descendants of Ap stars.

Ap stars ~ 5 % of A-type stars

Conclusions

> Mixing exists on the RGB (at the bump luminosity)

>Li and CN-processing of the envelope material in RGB stars brighter than the L bump

> Thermohaline instability

- explains the Li, C, N, ¹²C/¹³C observations in bright RGB low-mass stars
- and Li during TP-AGB

 \succ ... solves the long standing ³He problem in the Galaxy ?? (Answer at the end of my stay here)