
Thursday, April 21, 2011



Watching haloes fill with galaxies 

Institut d’Astrophysique de Paris 

Henry Joy McCracken

Thursday, April 21, 2011



Watching haloes fill with galaxies 

Institut d’Astrophysique de Paris 

Henry Joy McCracken

Thursday, April 21, 2011



Collaborators

Martin Kilbinger: HOD modelling, parameter estimation

Jean Coupon, HOD modelling, CFHTLS

Olivier Ilbert : Photometric redshifts

Yannick Mellier: CFHTLS 

Nick Scoville: COSMOS

Peter Capak: COSMOS catalogue production

Herve Aussel: COSMOS catalogue production 

Mara Salvato: COSMOS

Gigi Guzzo, Olivier Le Fevre: Spectroscopic surveys

Emanuele Daddi, Patrick Hudelot: Near IR data

Thursday, April 21, 2011



Lick-North

Cells 20’x20’
M_b<19

Seldner, Siebers, Groth, Peebles 1977

Thursday, April 21, 2011



Thursday, April 21, 2011



6 Zehavi et al.

Fig. 2.— A slice through the SDSS main galaxy sample, with galaxies color-coded based on rest-frame g − r color. The slice shows
galaxies within ±4 degrees of the Celestial Equator, in the north Galactic cap. The redshift limit has been moved inward relative to
Figure 1 to better reveal details of structure. The large structure cutting across the center of the map is the “Sloan Great Wall” (Gott et
al. 2005) discussed in §3.2.

estimate ξ(rp, π) using the Landy & Szalay (1993) esti-
mator

ξ(rp, π) =
DD − 2DR + RR

RR
, (1)

where DD, DR and RR are the suitably normalized num-
bers of weighted data-data, data-random and random-
random pairs in each separation bin. We weight the
galaxies (real and random) according to the angular se-
lection function; because we are using volume-limited
samples, we do not weight by a radial selection function.
We also tried the alternative ξ estimators of Hamilton
(1993) and Davis & Peebles (1983) and found no signifi-
cant differences in the results.

To examine the real-space correlation function, we fol-
low standard practice and compute the projected corre-
lation function

wp(rp) = 2

∫ ∞

0
dπ ξ(rp, π). (2)

In practice, for most samples we integrate up to πmax =
60 h−1 Mpc, which is large enough to include most corre-
lated pairs and gives a stable result by suppressing noise
from distant, uncorrelated pairs. For samples with low
outer redshift limits we use πmax = 40 h−1 Mpc (see Ta-
bles 1 and 2). We use these πmax values consistently
when modeling the clustering results. We use linearly
spaced bins in π with widths of 2 h−1 Mpc. Our bins in
separation rp are logarithmically spaced with widths of

0.2 dex, and the measurements are quoted at the pair-
weighted average separation in the bin. We checked the
robustness to binning in rp and π and find our results to
be insensitive to either.

The projected correlation function can be related to
the real-space correlation function, ξ(r), by

wp(rp) = 2

∫ ∞

rp

r dr ξ(r)(r2 − rp
2)−1/2 (3)

(Davis & Peebles 1983). In particular, for a power-law
ξ(r) = (r/r0)−γ , one obtains
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allowing one to infer the best-fit power-law for ξ(r) from
wp. Alternatively, one can invert wp to get ξ(r) indepen-
dent of the power-law assumption. Here, however, we
focus on wp itself, as this is the statistic measured di-
rectly from the data that is determined by the real-space
correlation function.

We estimate statistical errors on our different measure-
ments using jackknife resampling, as in Z05. We define
144 spatially contiguous subsamples of the full data set,
each covering approximately 55 deg2 on the sky. Our
jackknife samples are then created by omitting each of
these subsamples in turn. The error covariance matrix is
estimated from the total dispersion among the jackknife
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Luminous matter 
(like stars and 
galaxies) 
comprises less 
than 1% of the 
energy content of 
the Universe.

Galaxy formation 
and evolution is 
dominated by dark 
matter
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On galaxy formation
Our current galaxy formation paradigm:

Haloes of dark matter accrete and grow 
under the action of gravity

Baryonic matter gathers in these potential 
wells and forms stars and galaxies

The properties of dark matter haloes provide 
important information in addressing galaxy 
formation

3116 C M Baugh
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Figure 5. A schematic merger tree for a dark matter halo. The horizontal lines represent snapshots
in the evolution of the history of the halo, corresponding to timesteps in an N -body simulation or
Monte-Carlo realization of the merger tree (t1 < t2). The size of the circle indicates the mass of
the halo. The haloes grow through merger events between haloes and by accretion of objects below
the (halo) mass resolution (e.g. as depicted between steps t3 and t4). The final halo is shown at t5.

for a schematic merger tree). This requires typically around 50 outputs over a redshift interval
of approximately z = 20 to z = 0. Haloes are identified in a given output using a percolation
algorithm, such as friends-of-friends (Davis et al 1985) or some other prescription designed to
find a local overdensity (e.g. DENMAX, Gelb and Bertschinger (1994); Spherical-overdensity,
Cole and Lacey (1996); SKID, Governato et al (1997); Bound-density-maximum, Klypin
et al (1997); HOP, Eisenstein and Hut (1998)). The percolation algorithm links together all
particles that are within some specified distance of one another. The linking length is quoted
as some fraction of the mean interparticle separation and is set to return objects of a particular
overdensity (see White (2002)). The indices of the particles that belong to a particular halo
can then be tracked in the halo list generated from the preceding (in expansion factor) output.
Merger trees can also be generated using a Monte-Carlo approach by sampling the distribution
of progenitor masses predicted using the extended Press–Schechter theory (Lacey and Cole
(1994); Somerville and Kolatt (1999); Cole et al (2000); for a critique of the extended Press–
Schechter theory, see Benson et al (2005)). The Monte-Carlo approach generally gives a
less faithful representation of the merger trees than those extracted from N -body simulations,
particularly as the difference in expansion factor increases between the parent halo and the
progenitor branches (e.g. Somerville et al (2000)). For example, if one generates merger trees
for a representative sample of haloes at z = 0, and we then attempt to construct the mass
function of haloes at high redshift by combining the branches of the merger trees, with an
appropriate weighting based on the abundance of the parent haloes, then the result will not
agree with the mass function extracted from an N -body simulation at this epoch. The level of
this discrepancy can be reduced by empirically tuning the progenitor distributions, though no
theoretical justification exists for the form of such a correction (see, e.g. Benson et al (2001)).

Two key observable quantities:

• When did most galaxies form stars?

• When did most mass assemble into 
galaxies?

• What is the relationship between the 
dark matter haloes and the galaxies?
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Galaxies, haloes and star-formation

What stops star-formation in massive red 
galaxies? Why do the sites of star-
formation migrate from high-mass to low 
mass haloes?

How does star-formation rate relate to 
halo mass?

How does the halo mass where star-
formation is most efficient evolve from 
0<z<2? How does the peak luminosity of 
galaxies undergoing star-formation 
change with redshift?

What is the the role of environment in 
quenching star-formation? Are galaxies 
in over-dense regions more strongly 
quenched?

MIRACLES 10

Figure 6: Evolution of the stellar mass density ρ�(z) for the whole population (filled black circles), the RSGs
(fileld red triangles) and BCGs (blue squares) (Arnouts et al., 2007). Open green and grey symbols are from
literature.

Figure 7: Plot showing the 95% dark energy contours for 50 square degrees. The solid black line shows the
constraints from the CFHTLS-WIDE without NIR, therefore no tomography. The solid red shows the constraints
with three redshift bins obtained with the MIRACLES NIR data. As a comparison, we also show the constraints
from CFHTLS-DEEP tomography (dotted line) and with the complete 150 square degree CFHTLS-WIDE
without tomography (dashed line).

from as much as 30% to below 10%, (see the right panel on Figure 8). These results demonstrate how crucial the
NIR bands are for removing the degeneracy between low and high redshift galaxies, and this has been recognized
by the weak-lensing JDEM/Euclid missions that include a NIR imager for this reason. MIRACLES will provide
important feedback in preparation for JDEM/Euclid on how the NIR data will be best incorporated.

A key ingredient in the weak lensing interpretation is the knowledge of the redshift of the sources. Figure
7 shows how much gain to expect from accurate photometrics out to a redshift z=2 for constraining the dark
energy equation of state parameter w0. The gain is substantial, even when compared to the full 150 square
degree CFHTLS-WIDE survey.

2.4 Target finding for JWST, ELTs and ALMA

2.5 SCUBA2

10

Arnouts 2007
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Relating galaxies and dark matter

We would like to find a way to relate observed, visible 
galaxies with the underlying dark matter. 

In ideal world: full hydrodynamic simulations: but these 
are complicated, reserved for experts, and have difficult 
reaching the required resolution at the current day. 

Another possibility are semi-analytic models in which 
galaxies are “painted on”  to the dark matter haloes 
using a series of analytic recipes. Promising, but still for 
experts. 

A simpler phenomenological  model that observers could 
use... 
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How do galaxies populate haloes?

• “Semi-analytic” models and SPH 
models give a remarkably similar 
form for the mean number of galaxies 
as a function of halo mass

• Assume that “assembly bias” and 
environment are not important effects 
(which seems to be true for the time 
being)

Berlind and Weinberg 2002
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Towards a parametrisation of N(M)
• Separating galaxy populations 

into “central”  (the most massive 
galaxy at the center of the halo) 
and “satellite” populations 
considerably simplifies the 
analysis

• Satellites are poisson, central 
nearest integer

• In massive haloes, most galaxies 
are satellite galaxies 

• In less massive haloes, the 
central galaxy is dominant

• The “satellite fraction” is an 
important measurable quantity

Kravstov et al 2004
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The analytic halo occupation function

Number of 
central galaxies 
per halo

Number of 
satellites per 
halo

The one-halo term results from pairs of galaxies that reside
within the same halo (intrahalo pairs). This term is dominant on
small scales and, by definition, is sensitive to the fraction of gal-
axies that are satellites. Given an HODmodel, the one-halo term
is just the distribution of intrahalo galaxy pair separations as a
function of halo mass convolved with the halo mass function.
The calculation of this term is usually decomposed into contri-
butions by central-satellite and satellite-satellite pairs. We assume
that satellite galaxies follow the dark matter distribution within
halos, which we model with NFW profiles. As a result, the spatial
distribution of central-satellite pairs follows an NFW profile,
while that of satellite-satellite pairs follows an NFW profile
convolved with itself.

The two-halo term results from pairs of galaxies that reside
within different halos, and this term dominates the correlation
function on large scales. On the largest scales it is equal to the
mass correlation function times the mean galaxy-weighted halo
bias squared. On scales smaller than !1 h"1 Mpc one must in-
clude prescriptions for halo exclusion (halos cannot reside within
each other) and scale-dependent bias. In practice, it is easier to
calculate the power spectrum of the two-halo term rather than
directly calculate the spatial correlation function, and we refer
interested readers to Zheng (2004) and Tinker et al. (2005) for
further details.

5.2. HOD Parameterization

We use a five-parameter model to describe the mean number of
central and satellite galaxies (brighter than some luminosity) per
halo. We plot an example of this model in Figure 7 and discuss
the model in detail below. The functional form of this model is
motivated by HODs observed in galaxy formation simulations
(Berlind et al. 2003; Kravtsov et al. 2004; Zheng et al. 2005).
The mean number of central galaxies per halo is modeled with

Ncen Mð Þh i¼ 1

2
1þ erf

logM " logMmin

!log M

! "# $
; ð8Þ

where erf is the error function

erf xð Þ ¼ 2ffiffiffi
"

p
Z x

0

e"t2 dt: ð9Þ

At a halo mass of Mmin, 50% of halos host a central galaxy. If the
relationship between galaxy luminosity and halo mass had no
scatter, hNceniwould be modeled by a step function. In reality this
relation must have some scatter, resulting in a gradual transition
from hNceni ’ 0 to hNceni ’ 1, whose width we quantify with the
parameter ! log M.

We approximate the mean number of satellite galaxies per halo
with a power law truncated at a threshold mass of M0:

Nsat Mð Þh i¼ Ncen Mð Þh i
M "M0

M 0
1

! "#

: ð10Þ

The parameter M 0
1 corresponds to the halo mass where

hNsat(M )i ’ 1 when (as is the case here) M 0
1 3M0 and M 0

1 3
Mmin. When # ¼ 1 andM 3M0, the mean number of satellites
per halo is proportional to halo mass. The number of satellites in
halos of a given mass is assumed to follow a Poisson distribution,
which is consistent with theoretical predictions (Kravtsov et al.

2004; Zheng et al. 2005) and current observational constraints
(Yang et al. 2005, 2007; Ho et al. 2007).

For each subsample of the red galaxy catalog we tested a range
of plausible HOD models. For each HOD model we determined
the galaxy space density and spatial correlation function using the
analytic methodology described above, and then determined
the corresponding angular correlation function using the Limber
(1954) equation. For each HOD model we estimated $2 values
using the full covariance matrices and a space density prior in-
cluding fractional uncertainties determined using mock catalogs.

To rapidly explore the plausible range of HOD parameter
space, we applied the Markov chain Monte Carlo (MCMC)
method (see, e.g., Gilks et al. 1996). This method generates a
list (or chain) of HOD parameters whose frequency in the chain
traces the likelihood of that model fitting the data. It works by
generating random HODs from a trial distribution and accepting
or rejecting them based on the relative likelihood of the fit. We
choose new models by perturbing the HOD parameters from the
last accepted chain element by Gaussian offsets in the log of the
relevant parameter. The step size and directions are determined
from the covariance matrix of a previous run of the chain. We
further restricted the HOD parameter space to those models with
! log M < 0:6. Each chain provides the HOD distribution and a set
of models that provide good fits to the observations.

We provide a summary of our best-fit HOD parameter values
in Tables 4 and 5.WhileMmin andM

0
1 have small uncertainties, the

other parameters are poorly constrained. As the measured HOD
parameter values are correlated with each other,Mmin andM

0
1 as a

function of luminosity would show less scatter if the other HOD
parameters hadwell-determined values. For this reason, in Table 5
we provide fits of HODmodels where onlyMmin andM

0
1 are free

Fig. 7.—Mean number of central and satellite galaxies per halo, as defined by
eqs. (8) and (10). Plotted is the HOD of MB " 5log h < "18 red galaxies at
0:4 < z < 0:6. By definition halos host either zero or one central galaxy, with 50%
of halos of massMmin hosting a central galaxy. The parameter ! log M quantifies
the mass range where hNceni transitions from ’0 to ’1. Satellites can reside in
halos more massive than M0, and at mass of M 0

1 the mean number of satellites
per halo is ’1. In very massive halos, the number of satellites is proportional to
halo mass to the power of #.
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Halo-model signatures from SDSS LRGs 1261

function ξ (r) = (r/r0)−γ , then the amplitude of the power-law an-
gular correlation function w(θ ) = a θ1−γ follows from Limber’s
equation:

a = Cγ r γ
0

∫
dz p(z)2

(
dx
dz

)−1

x(z)1−γ , (4)

where x(z) is the comoving radial coordinate at redshift z and
Cγ = $( 1

2 )$( γ

2 − 1
2 )/$( γ

2 ). In Table 1, we determine the corre-
sponding values of r0 and γ for each redshift slice. The amplitude
of the clustering length, r0 = 7.2–9.3 h−1 Mpc, is consistent with
highly biased massive galaxies. Our small-scale angular clustering
measurements are not affected by redshift-space distortions, since
the photo-z errors are much bigger than the peculiar velocities of
the galaxies. Correlated redshift-space distortions are important on
larger scales, however, as discussed in Blake et al. (2007) and Pad-
manabhan et al. (2007).

The clustering amplitude systematically increases with redshift
for the following two reasons.

(i) Each volume-limited sample in successive redshift slices has
the same limiting apparent magnitude hence higher luminosity
threshold. The higher-redshift galaxies are hence preferentially
more luminous and more strongly clustered (e.g. Norberg et al.
2002; Zehavi et al. 2005b). In Table 1, we list the threshold absolute
i-band magnitude Mi of galaxies in each redshift slice, calculated
using an LRG K-correction (Wake et al. 2006).

(ii) In standard models of the evolution of galaxy clustering, the
bias factor of a class of galaxies increases with redshift in opposi-
tion to the decreasing linear growth factor, in order to reproduce the
observed approximate constancy of the small-scale comoving clus-
tering length (e.g. Lahav et al. 2002). Simple models for this effect
such as b(z) = 1 + (b0 − 1)/D(z) (Fry 1996) or b(z) = b0/D(z),
where D(z) is the linear growth factor, predict an evolution in bias
across our analysed redshift range of %b ≈ 0.2.

These trends are in good agreement with our measurements of the
amplitude of the large-scale clustering pattern (Blake et al. 2007).

4 H A L O - M O D E L F R A M E WO R K

We use the halo model of galaxy clustering to produce model spatial
correlation functions ξ (r) to fit to our measurements. We summarize
the ingredients of our model here. Further details can be found
in, for example, Seljak (2000), Cooray & Sheth (2002), Berlind &
Weinberg (2002), Kravtsov et al. (2004), Zehavi et al. (2004), Zheng
(2004), Zehavi et al. (2005b) and Tinker et al. (2005).

In the halo-model framework, the clustering functions are ex-
pressed as a sum of components due to pairs of galaxies within
a single dark matter halo (the ‘one-halo term’ ξ 1) and to pairs of
galaxies inhabiting separate haloes (the ‘two-halo term’ ξ 2):

ξ (r ) = [1 + ξ1(r )] + ξ2(r ) (5)

where the ‘1+’ at the start of the expression arises because the total
number of galaxy pairs (∝ 1 + ξ ) is the sum of the number of pairs
from single haloes (∝ 1 + ξ 1) and from different haloes (∝ 1 + ξ 2).
The two terms dominate on different scales, with the one-halo term
only important on small scales !1 Mpc.

The fundamental ingredient of the galaxy halo model is the HOD,
which describes the probability distribution for the number of galax-
ies N hosted by a dark matter halo as a function of its mass M. In
order to construct the one-halo and two-halo two-point clustering
terms, we require the first and second factorial moments of the HOD,
〈N | M〉 and 〈N(N − 1) | M〉. We make the assumption that the first

galaxy to be hosted by a halo lies at the centre of the halo, and any
remaining galaxies are classified as ‘satellites’ and distributed in
proportion to the halo mass profile. We apply different HODs for
the central and satellite galaxies, 〈Nc | M〉 and 〈Ns | M〉, respectively,
where

〈N | M〉 = 〈Nc | M〉(1 + 〈Ns | M〉) (6)

Equation (6) takes its form because a halo can only host a satellite
galaxy if it already contains a central galaxy. We will use the notation
Nc(M) = 〈Nc | M〉, Ns(M) = 〈Ns | M〉 and N (M) = 〈N | M〉 in the
equations that follow.

4.1 The one-halo term ξ1(r )

The one-halo galaxy correlation function is composed of contri-
butions from central–satellite pairs and satellite–satellite pairs. It
is convenient to evaluate these two contributions separately. The
one-halo correlation function for central–satellite pairs is given by

1 + ξ1,c−s(r ) =
∫ ∞

Mvir(r )

dM n(M)
Nc(M)Ns(M)

n2
g/2

ρ(r |M)
M

, (7)

where ng is the galaxy number density, n(M) is the halo mass func-
tion, and ρ(r | M) is the halo density profile. The lower limit for the
integral is the halo mass M corresponding to a virial radius r, given
that less-massive haloes have smaller radii and cannot contribute
any central–satellite galaxy pairs with a separation r:

Mvir(r ) = 4
3
πr 3ρ%, (8)

where ρ = 2.78 × 1011'm h2 M( Mpc−3 is the co-moving back-
ground density of the Universe, and % = 200 is the critical over-
density for virialization.

It is simplest to evaluate the one-halo correlation function for
satellite–satellite pairs in a Fourier space (where convolutions be-
come multiplications). The power spectrum is

P1,s−s(k) =
∫ ∞

0

dM n(M)
Nc(M)N 2

s (M)
n2

g
|u(k | M)|2, (9)

where u(k | M) is the Fourier transform of the halo density profile
ρ(r | M). Because satellite galaxies are Poisson-distributed, we can
write 〈Ns(Ns − 1)〉 = 〈Ns〉2 to obtain the above equation. The cor-
relation function corresponding to equation (9) is then

ξ1,s−s(r ) = 1
2π2

∫ ∞

0

dk P1,s−s(k) k2 sin kr
kr

. (10)

The total one-halo correlation function is then derived as

ξ1 = ξ1,c−s + ξ1,s−s (11)

4.2 The two-halo term ξ2(r )

The two-halo galaxy correlation function at a separation r is evalu-
ated from the scale-dependent two-halo power spectrum P2(k, r):

P2(k, r ) = Pm(k)

×
[∫ Mlim(r )

0

dM n(M) b(M, r )
N (M)
n′

g(r )
u(k | M)

]2

, (12)

where Pm(k) is the non-linear matter power spectrum at the survey
redshift, b(M, r) is the scale-dependent halo bias at separation r, and
n′

g(r) is the restricted galaxy number density at a separation r:

n′
g(r ) =

∫ Mlim(r )

0

dM n(M)N (M). (13)

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 385, 1257–1269

• If P(N|M) is specified by only the halo mass ... then we don’t need 
to a do a full semi-analytic / SPH simulation to determine it! 

Zheng et al  2005
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A word on two-point correlation 
functions...

Two-point correlation functions give the excess probability for finding a 
neighbour a distance r from a given galaxy:

• In projected surveys, w(θ) is the simply the projection of xi(r) on the sky and depends 
(amongst other things) on the source redshift distribution

w(θ) =
DD − 2DR+RR

RR

• Measurement of w is simple -- just count the number of pairs as a function of angular 
scale between data catalogues D and random catalogues R
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Deriving the galaxy correlation function

• Galaxy clustering statistics measure the number of pairs in 
excess of a random distribution

• In the “halo model” we suppose that the pair counts come 
from galaxies inside the same halo and galaxies in 
separate haloes

• The relative importance of each term depends on the angular 
scale and the size of the haloes

• In galaxy-galaxy lensing, we remove any additional 
uncertainty on the halo profiles, but only works at lower 
redshifts

“Halo models” are not meant as a replacement for traditional models of galaxy 
formation but are simply a technique to extract additional information from the 
observations
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The one and two-halo terms

15 3.1 A phenomenological model for galaxy clustering

matter haloes and the fraction of galaxies which are satellites. Given a large
enough samples of galaxies, one can determine these quantities for a range of
different galaxy populations. Given stellar mass estimates, one can also estimate
the efficiency with which haloes form stars (Moster et al., 2010; Guo et al., 2010;
Foucaud et al., 2010).

In the next section I will present a detailed description of the halo model
developed I have in collaboration with M. Kilbinger and present some preliminary
results applied to two diverse data sets: the COSMOS survey (Scoville et al.,
2007) and the CFHTLS. The halo model described here and its extensions to
higher orders is expected to form in large part the basis for the doctoral thesis of
Melody Wolk, who has started her thesis at the IAP under the direction of myself
and Stephane Colombi in September 2010. A large part of the results presented
in this chapter form the basis of two articles currently under preparation.

3.1.1 Our implementation of the halo model

In our version the halo model, we follow closely the scheme outlined by Berlind
& Weinberg (2002) and refined in later papers (Zheng et al., 2005; Tinker et al.,
2005).

We start by noting that the observed galaxy correlation function ξ(r) can be
expressed as the sum of correlation function arising from pairs in different haloes
and from pairs in the same halo, namely

ξgg(r) = [ξ1hgg (r) + 1] + ξ2hgg (r) (3.1)

.
The one halo term can be written as follows:

1 + ξ1hgg (r) =
1

2
n̄−2
g

∫
n(M)〈(N(N − 1)〉Mλ(r|M)dM (3.2)

and the two halo term as:

ξ2hgg = ξlindm(r)n̄
−2

∫
n(M1)bh(M1)〈N〉M1dM1

×
∫

n(M2)bh(M2)〈N〉M2λ(r|M1M2)dM2 (3.3)

Here ξlindm(r) represents the linear dark matter power spectrum.
Considerations from both semi-analytic models (Benson et al., 2000) and SPH

simulations (Berlind & Weinberg, 2002; Kravtsov et al., 2004) indicate that the
galaxy population can be separated into two classes: massive “central” galaxies
at the cores of dark matter haloes, which follow the large-scale distribution of
dark matter, and “satellite” galaxies which trace the profile of dark matter haloes.
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requires Mmin ¼ 6:10" 1012 h#1 M$, and the fraction of
galaxies in halos with M < M1 is 75%. The !2 value of the fit
is 9.3 for 10 dof (12 data points minus the two parameters that
are varied to fit the correlation function), or !2=dof ¼ 0:93.
Thus, the HOD model yields a statistically acceptable fit to the
data, and with the same number of free parameters as the
power law, it fits the data significantly better (!!2 ¼ 51:9).
The lower panel of Figure 3 shows the ratio of the data points
and the HOD model to the best-fit power law, from which one
can see that the model predicts just the sorts of dip at%1–2 h#1

Mpc and bulge at several h#1 Mpc that are observed in the data.
The error bars on the model parameters (defined by !!2 ¼

1) are &0.05 in " and &0:5" 1013 h#1 M$ in M1. These
errors are strongly correlated, but the mean occupation at
M ¼ 1014:5 h#1 M$ is constrained to log10 N14:5h i ¼ 0:733&
0:007, with an error that is nearly uncorrelated with " . If we
use the jackknife covariance matrix estimated from the data
instead of the mock-catalog covariance matrix, we obtain a
very similar fit, with nearly the same !2. If we use the mock-
catalog covariances without the scaling described in x 2, we
obtain a very similar fit, with a lower !2. A mean multiplicity
of 5.4 at 1014.5 h#1 M$ might look low at first glance, but our
luminosity threshold is fairly high (%1.5L*), and this multi-
plicity is reasonably consistent with the number of compara-
bly luminous galaxies in Virgo (Trentham & Tully 2002) and
with the measured richness or luminosity of SDSS clusters at a
similar cumulative space density of n >Mð Þ ¼ 6:4" 10#6 h3

Mpc#3 (Bahcall et al. 2003).
The HOD model that we have fitted to the data is not unique,

since we could have adopted a different form for Nh iM , for the
width of the distribution at fixed M, or for the internal distri-
bution of galaxies within halos. For example, if we change the
normalization of the c Mð Þ relation from c M)ð Þ ¼ 11 to 20 or
5, or the index from #0.13 to 0 or #0.25, then we still get
acceptable (though slightly worse) fits to the wpðrpÞ data, but
with changes of %0.1 in " and associated changes in M1 and
Mmin. Increasing halo concentrations shifts one-halo pairs
toward smaller separations, and this change can be compen-
sated for by putting more galaxies into halos with large virial
radii. We have also considered a model for P N j Nh ið Þ that

closely tracks the predictions of semianalytic models and SPH
simulations (Kauffman et al. 1999; Benson et al. 2000; Seljak
2000; Scoccimarro et al. 2001; Berlind et al. 2003) in which the
width climbs steadily from nearest-integer at Nh i % 1 to
Poisson at high N, with the transition halfway complete at
Nh i % 4. We again find that we can fit the data nearly as well
as with our baseline model, with only slight changes to the
Nh iM parameters. We are also able to fit wpðrpÞ well using the

Fig. 3.—Projected correlation function for the M0:1r < #21 sample,
together with that for the best-fit HOD model, with parameters " ¼ 0:89,
M1 ¼ 4:74" 1013 h#1 M$, and Mmin ¼ 6:10" 1012 h#1 M$. The reduced
!2 for this two-parameter fit is !2=dof ¼ 0:93, while the reduced !2 for the
power-law fit shown by the solid line in Fig. 1 is !2=dof ¼ 6:12. The lower
panel shows the data and model prediction divided by this best-fit power law.
In the upper panel, dotted curves show the one- and two-halo contributions to
wpðrpÞ, and the dashed curve shows the projected correlation function for the
matter computed from the nonlinear power spectrum of Smith et al. (2003).

Fig. 2.—Real-space galaxy correlation functions for HOD models with M1 ¼ 4:74" 1013 h#1 M$ and varying values of " (left) and with " ¼ 0:89 and varying
values of M1 (right). For each model we plot the total # rð Þ (upper curve) and the one-halo contribution (lower curve). The dotted curve shows the two-halo
contribution for the central model; this contribution is similar but not identical in the other models. In all models, the parameter Mmin is adjusted to keep the space
density fixed at n ¼ 9:9" 10#4 h3 Mpc#3.
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Inside a halo

Between haloes

• At large scales this becomes the simple linear bias 
term

• 1h term =  central-sat term + ss term

•  “The transition scale” between one-halo and two-
halo terms is sensitive to the effects of “halo 
exclusion” and it’s important to model this accurately 
because most of the signal in galaxy surveys is on 
these scales

halo profile

halo mass function
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How to compute the expected galaxy 
clustering using the halo model

Three ingredients are necessary to generate a prediction of w, the projected two-
point correlation function:

1.  An accurate representation of the non-linear power spectrum of dark matter, 
the density profile of dark matter haloes and the number of dark matter 
haloes as a function of halo mass

2.  A prescription (“guess”) for how the numbers of galaxies and pairs of 
galaxies which inhabit each dark matter halo depend on the halo mass. 

3.  Knowledge of the redshift selection function for each sample. 

By matching the observed clustering of galaxies with predictions of this model one 
can derive:

The typical mass of the underlying dark matter haloes

The fraction of galaxies which are satellites

The average bias (how much dark and luminous matter there is)
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Parameter estimation with PMC

• Our highly optimised halo model code can compute w for a five-parameter halo 
model in less than 1s 

n�

ij

�
(wobs(θi)− wm(θi))(Cij)−1(wobs(θj)− wm(θj))

�

Properties of host haloes of LBGs and LAEs 817

Table 2. The galaxy number-weighted average mass of hosting halo
〈 Mhost〉 (in units of h−1 M$) and the expected number of galaxies
per halo 〈N g〉 for typical values of HOF parameters.

Sample (Mmin, M1, α) 〈N g〉 〈Mhalo〉

LBGz4s (1.6 × 1011, 2.4 × 1012, 0.5) 0.38 6.3 × 1011

LBGz5s (1.4 × 1011, 1.4 × 1012, 0.5) 0.45 4.5 × 1011

constructed from the observed number density and the angular two-
point correlation functions:

χ 2(Mmin, M1, α) =
∑

θbin

[ωobs(θbin) − ωmodel(θbin)]2

σ 2
ω(θbin)

+
[log nobs

g − log nmodel
g ]2

σ 2
log ng

, (13)

where σ ω and σ logng are the statistical 1σ errors in the measurements
of the angular correlation function and the number density, respec-
tively. In the above likelihood estimator, we take the logarithm of
the galaxy number density instead of the number density itself, be-
cause the predicted galaxy number density varies logarithmically
with M1. Note that, although the HOF parameters can depend on
time in general, we assume here for simplicity that the three param-
eters are constant within the redshift interval of each sample. For
LAEz5s, this must be the case as the redshift interval is very small.
It turns out (see Section 4.3) that the HOF parameters for LBGs do
not change significantly over three LBG samples at z ∼ 3, z ∼ 4
and z ∼ 5. Therefore the above assumption is reasonable for LBGs
as well. We also note that the present analysis does not take the
cosmic variance into account, although it may be important for rel-
atively small survey volumes for those samples. Figs 3 and 4 show
the χ 2 map on two-parameter planes after marginalizing over the

Figure 3. Confidence contour maps derived from &χ2 for LBGz4s on the two-parameter plane after marginalizing over the remaining one parameter. Top-left
panel is on Mmin–M1, top-right on α–M1 and bottom-left on Mmin–α. A darker grey-scale indicates a lower &χ2 value (thus more likely). Contour lines
indicate from inner to outer &χ2 = 2.3, 6.17 and 11.8, which, if each bin of the correlation function is independent, correspond to 68.3, 95.4 and 99.73 per
cent confidence levels, respectively. In the present analysis, these confidence levels should be understood as approximate estimates.

remaining one parameter. The two-dimensional likelihood contours
represent &χ2 = 2.3, 6.17 and 11.8, which, if each bin of the corre-
lation function is independent, should correspond to 68.3, 95.4 and
99.7 per cent confidence levels (Press et al. 1986). Strictly speaking,
however, the sampled correlation function bins are not completely
independent, and these confidence levels should be regarded simply
as approximate estimates.

Examine first the parameters for LBGz4s, which are fairly
strongly constrained by the observations (Fig. 3). The top-left panel
shows the likelihood map on the Mmin–M1 plane. As pointed out
earlier by Berlind & Weinberg (2002), Bullock et al. (2002) and
Moustakas & Somerville (2002), M1 and Mmin are mainly con-
strained by the number density and their clustering amplitude on
large scales (θ > 1 arcmin), respectively. As Fig. 2 shows, the ob-
servational uncertainty in the clustering amplitude for LBGz4s is
fairly small and δn/n ∼ 12 per cent. Thus we have relatively tight
constraints on those two parameters. The constraint on α is weak
because of the degeneracy with the other two parameters. However,
it is clear that the data favour α < 1, implying that the galaxy for-
mation is less efficient (or small galaxies merge more efficiently to
form larger ones) in more massive haloes.

Turn next to LBGz5s (Fig. 4). The constraints on this population
are not so tight because of much larger uncertainties in the clustering
amplitude (Fig. 2) and in the number density, δn/n ∼ 62 per cent.
Nevertheless, the constraints on the parameters for LBGz5s seem
very similar to those for LBGz4s, and we are not able to detect
any significant difference of the parameter values of LBGs between
z = 4 and 5.

Figs 5 and 6 compare the observed angular two-point correlations
with the halo model predictions based on preferred parameters for
LBGz4s and LBGz5s, respectively. In plotting the model predic-
tions, we adopt Mmin = 1.6 × 1011 h−1 M$, M1 = 8 × 1012 h−1

C© 2004 RAS, MNRAS 347, 813–823

χ2 =

• Models must reproduce the observed number density of galaxies; this a 
very strong constraint

• Our covariance matrix C is derived using jack-knife resampling techniques

• We use the parallel “population monte carlo” (Wraith et al, Benabed, Kilbinger 
et al) technique to carry out a complete sampling of parameter space and 
derive realistic errors on fitted and derived parameters. On a cluster like 
magique2 we can sample 200,000 points in ~ 30 mins. 
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Average halo bias

Average halo mass

Once we have found a best fitting halo model we can derive these additional 
parameters by marginalisation:

Properties of host haloes of LBGs and LAEs 819

Figure 7. The likelihood functions (!χ2) for Mmin (dashed lines) and for
M1 (solid lines) obtained after marginalizing over the other two parameters.
The upper and lower panels are for LBGz4s and LBGz5s, respectively.

〈Ng〉 ≡

∫ ∞

Mmin
Ng(M)nhalo(M, z) dM

∫ ∞

Mmin
nhalo(M, z) dM

. (15)

Those are evaluated assuming typical sets of HOF parameters that
we found in the previous subsection (Table 2). The average mass
of the hosting haloes for LBGs is (5–6) × 1011 h−1 M', and the
average number of galaxies per halo is ∼0.4. Thus LBGs have an
approximate one-to-one correspondence to relatively less massive
haloes.

4.3 Evolution of properties of the hosting haloes for LBGs

Turn next to the evolution of the hosting haloes for LBGs. Our
current analysis indicates that the minimum halo mass Mmin for
LBGs is almost the same ∼1.5 × 1011 h−1 M' at z ∼ 4 and z ∼ 5.
The halo mass accommodating more than one galaxy, M1, seems to
be increasing with time although barely at a 1σ level.

The almost identical analyses by Moustakas & Somerville (2002)
and Bullock et al. (2002) for z ∼ 3 LBGs (Steidel et al. 1998;
Adelberger et al. 1998; Adelberger 2000) indicate that Mmin = 1.3
× 1010 h−1 M' and M1 = 6 × 1012 h−1 M' for α = 0.8, and that
Mmin = (0.4 –8) × 1010 h−1 M', M1 = (6 –10) × 1012 h−1 M'
and 0.9 < α < 1.1, respectively. Taking account of the relatively
large uncertainties in those estimates, their results are consistent
with ours, and indeed the combined results may indicate an evolu-
tionary trend of decreasing Mmin and increasing M1 with decreasing
z. The different selection criteria at different redshifts may induce
an artificial systematic effect in estimating hosting halo mass, but
this is not the case here. If the limiting flux of a sample is brighter,
galaxies in the sample have a smaller number density and usually
a higher clustering amplitude. This leads to increasing Mmin and
M1 simultaneously. However, the limiting absolute magnitudes for
LBGz3s, LBGz4s and LBGz5s are M1700 = −19.3 + 5 log h, M1700

=−19.0 + 5 log h and M1700 =−19.7 + 5 log h, respectively. There-
fore, it is very unlikely that the difference in the limiting magnitude
solely accounts for the systematic (although weak) trends in Mmin

and M1.

In summary, the hosting haloes for LBGs are characterized as
follows: (i) Mmin is about ) 1.5 × 1011 h−1 M' at both z ∼ 4 and
z ∼ 5, while it decreases to about Mmin = (0.4 –8) × 1010 h−1 M'
at z ∼ 3. (ii) M1 increases with time, M1 ) 1.4 × 1012, 2.4 × 1012

and (6 –10) × 1012 h−1 M' for z = 5, 4 and 3, respectively.

5 R E S U LT S O N LY M A N α E M I T T E R S

Let us turn to LAEz5s. As shown in Fig. 2, their angular correlation
function exhibits a somewhat irregular shape. This is more clearly
seen in the plot of the bias (lower panel of Fig. 2). On scales less than
120 arcsec, the bias increases with decreasing separation similarly
to LBGs, and its amplitude is in the range between those for LBGz4s
and LBGz5s. On the other hand, on larger scales the bias factor is
rather high, which is in marked contrast with LBGs. The number
density of LAEs is higher than that of LBGz5s but it has a large
uncertainty, δn/n ∼ 65 per cent. It should be noted that the survey
volume of LAEz5s is small, (30 h−1 Mpc)3 (comoving volume), so
it is possible that these measurements are significantly affected by
the cosmic variance.

For reference, we give here some numbers that are useful in the
following discussion. At the redshift of LAEz5s, z ) 4.86, 1 arcmin
corresponds to 1.56 h−1 Mpc (comoving), and the average number of
haloes with mass larger than M within the survey volume computed
from the halo mass function is N(>M) = 90, 10 and 1, for M =

3 × 1011, 1 × 1012 and 3 × 1012 h−1 M', respectively.
We apply the same likelihood analysis as performed for LBGs

in the last section, but we find that our simple HOF prescription
fails to reproduce simultaneously the observed angular correlation
function and number density. Indeed, no parameter set is found to
give a reasonably small χ2. The most serious discrepancy is the
very high correlation amplitude on scales larger than 120 arcsec. In
what follows, we present two illustrative examples of failed models,
which would help to search for a possible solution of the problem.
For this purpose, we plot halo model predictions for the number
density of LAEz5s in Fig. 8, in which the grey region indicates the
1σ range of the observed number density, and halo model predictions
for the large-scale bias factor defined by equation (6) in Fig. 9.

The first example is as follows. Taking the amplitude of the cor-
relation function on large scales (b = 7–9 for θ > 120 arcsec, see
Fig. 2), one finds in Fig. 9 that Mmin = (2–5) × 1012 h−1 M' is
required irrespective of α. This value combined with the observed
number density of LAEz5s gives roughly M1 ∼ 1011 h−1 M' (or
less) for a reasonable range of α (Fig. 8). This parameter set, how-
ever, predicts a much higher correlation amplitude than observed on
smaller scales (Fig. 10). If one attempts to have a reasonable cor-
relation amplitude on a smaller scale, a very large M1 (more than
∼ 1014 h−1 M' at least) is required (see Fig. 10), which leads to a
number density that is too small.

One possible way to reconcile this discrepancy is to modify the
halo model that we have adopted. Fig. 10 indicates that it is the one-
halo term that boosts the correlation amplitude on smaller scales.
Therefore, our assumption in the halo model that the galaxy distribu-
tion follows the dark matter distribution may not hold for LAEz5s.
In this paper, however, we do not attempt to develop the HOF model
by allowing a possible variation on the galaxy distribution within
haloes, because the statistical accuracies of the correlation func-
tions on small scales are still relatively low. Indeed, the number of
small separation pairs is very small; the number of LAE pairs that
fall into the smallest separation bin is two, and that into the second
bin is five. This means that haloes having more than one LAE are
limited, and one has to keep in mind that the correlation function

C© 2004 RAS, MNRAS 347, 813–823
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What the halo parameters actually mean

• Fixed alpha, M_min; only M1 allowed to vary 

Zehavi et. al 2010, SDSS clustering

• More luminous objects have more pronounced one-halo term and large 
fraction of satellites

Galaxy Clustering in the Completed SDSS Redshift Survey 23

Fig. 20.— HOD models of the correlation function in fine color bins of the −20 < Mr < −19 sample. The top-left panel shows the
measured wp(rp) and the best-fit HOD models. Offsets of 0.25 dex are added for visual clarity, with the bluest galaxies at the bottom.
The top-right panel presents the corresponding mean occupation functions, 〈N(Mh)〉, color-coded in the same way, with dashed and dotted
lines showing contributions of central and satellite galaxies, respectively. The bottom-right panel shows the same halo occupation functions
normalized so that their central galaxy occupation functions coincide. The bottom-left panel shows the satellite fraction versus median
halo mass for these color subsamples. Each colored “streak” shows results for models acceptable at the ∆χ2 < 1 level; since the models
have only one adjustable parameter, the uncertainty on this parameter produces a 1-dimensional locus in this 2-dimensional plane.

As discussed in §3.3, the trend of clustering strength
with luminosity is explained principally by a rise in the
central galaxy halo mass, and the satellite fraction drops
with increasing luminosity because the halo mass func-
tion steepens at higher masses. In contrast, the trend
with color at fixed luminosity can be explained with a
constant halo mass for central galaxies and a steady in-
crease of satellite fraction with redder color. The in-
crease in typical host halo mass leads to the increase in
the large-scale bias factor and thus the higher clustering
amplitude at large scales. However, increasing fsat drives
the 1-halo term up more rapidly than the bias factor, so
the correlation function steepens for redder galaxies as
well. The success of our simple HOD model does not
rule out a shift in central-galaxy halo mass for redder

galaxies, but explaining the strong observed color trend
solely through the central galaxy occupation would re-
quire placing moderate luminosity red galaxies at the
centers of very massive halos, and it might well be im-
possible to match the clustering and number density con-
straints simultaneously.
Returning to the joint dependence on color and lumi-

nosity (§4.3), Figure 21 presents HOD model fits to the
blue and red galaxy populations for three of the luminos-
ity bins shown in Figure 16. We use the same modeling
approach adopted above for the fine color bins: we dif-
ference the central galaxy occupation functions of two
luminosity-threshold samples to get the central galaxy
occupation function of the luminosity bin, fix the satel-
lite slope to α = 1, and vary only the relative central
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What kind of surveys do we need?
90 Mpc

Low redshift surveys can now tell us a 
lot about the local universe. 

But how do the galaxies seen in high 
redshift surveys evolve into the present day 
populations?

Red sequence / blue cloud 

How does the properties of the hosting 
dark matter halo depend on luminosity and 
colour selection?

To answer this question we need surveys 
which can probe a large enough range in 
densities at scales at 1-10 h-1 Mpc at z~1 
to a depth of at least 0.1L*

This means a field size of at least 2 deg2

And enough filters to compute photometric 
redshifts to 5% accuracy. 

A slice of a simulated Universe at z~1 
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The CFHTLS and COSMOS surveys

• The CFHTLS and COSMOS surveys are two unique and 
complimentary probes of the distant Universe

• The COSMOS survey covers ~2 deg2
  with very deep, 

multi-colour data (almost all bands and wavelengths); most 
precise photometric redshifts available

• CFHTLS covers ~130 deg2  in ugriz : a unique probe of the 
Universe at z~1; over one million galaxies; CFHTLS can 
also access higher mass haloes. We can probe over a 
much larger range in redshift than SDSS  

• COSMOS galaxies have stellar mass estimates and 
importantly can access the important 1<z<2 redshift range.
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Photometric redshifts: a cheap way to get 
galaxy distances (Ilbert et al. 2006,8 and 

Coupon et al. 08)

“Photometric redshifts” are computed by comparing observed spectral energy 
distributions with a set of template SEDs. 

For many years the accuracy of photometric redshifts was difficult to assess 
because of the lack of large (>10k objects) spectroscopic training sets (it turned 
out that a lot of photo-zeds computed without training sets were actually wrong!) 

Wide-field cameras with precise photometric calibration (like MegaCam) 
combined with wide field spectrographs producing training sets of ~10k galaxies 
(like VIMOS) makes estimating photometric redshifts for millions of galaxies with 
percent-level accuracy possible

844 O. Ilbert et al.: Accurate photometric redshifts for the CFHTLS calibrated using the VVDS

Fig. 2. Observed colours as a function of the spectroscopic redshifts (black points). The predicted colours derived from our optimised set of
templates (see Sect. 4.2) are shown with solid lines: Ell (red), Sbc (magenta), Scd (green), Irr (cyan) (Coleman et al. 1980) and starburst (dark
blue) (Kinney et al. 1996) from the top to the bottom, respectively. The colours computed using the initial templates are shown with dashed lines.

The observed colours are matched with the colours predicted
from a set of spectral energy distribution (SED). Each SED is
redshifted in steps of δz = 0.04 and convolved with the filter
transmission curves (including instrument efficiency). The opac-
ity of the inter-galactic medium (Madau 1995) is taken into ac-
count. The merit function χ2 is defined as

χ2(z, T, A) =
N f∑

f=1




F f
obs − A × F f

pred(z, T )

σ f
obs




2

, (1)

where F f
pred(T, z) is the flux predicted for a template T at red-

shift z. F f
obs is the observed flux and σ f

obs the associated error.
The index f refers to the considered filter and Nf is the number
of filters. The photometric redshift is estimated from the min-
imization of χ2 varying the three free parameters z, T and the
normalization factor A. We parabolically interpolate the redshift
probability distribution to refine the redshift solution.

3.2. Template set

Our primary templates are the four Coleman, Wu and
Weedman (CWW; 1980) observed spectra (Ell, Sbc, Scd, Irr)
commonly used to estimate the photometric redshifts
(Sawicki et al. 1997; Fernández-Soto et al. 1999; Arnouts et al.
1999; Brodwin et al. 2006). We add an observed starburst
SED from Kinney et al. (1996) to make our template set more
representative. These templates are linearly extrapolated into

ultraviolet (λ < 2000 Å) and near-infrared wavelengths us-
ing the GISSEL synthetic models (Bruzual et Charlot 2003).
For spectral types later than Scd, we introduce a reddening
with various values of E(B − V) (0,0.05,0.1,0.15,0.2,0.25)
which follows the interstellar extinction law measured in the
Small Magellanic Cloud (Prevot et al. 1984). Reddening of
E(B − V) = 0, 0.05, 0.1, 0.15 is introduced for Scd spectral type.
No reddening is included for earlier types. Even if these five
templates are not completely representative of the variety of
observed spectra, their small number significantly reduces the
possible degeneracies between predicted colours and redshift
(Benítez 2000).

3.3. Results based on the standard χ2 method

We first apply the standard χ2 method on the CFHTLS-D1 data
without incorporating any spectroscopic information. Figure 3
shows a comparison between the VVDS spectroscopic redshifts
and the photometric redshifts at i′ ≤ 22.5. A clear systematic off-
set is visible at zs < 0.5. We would not expect such a trend to ap-
pear for such a relatively bright sample in a redshift range where
the Balmer break is between our u∗ and r′ filters. Small uncer-
tainties in the photometric zero-point calibration or an imperfect
knowledge of the complete instrument transmission curve are
probably responsible for this trend.

At fainter magnitudes (top left panel of Fig. 6, method a)),
we see there is a large number of galaxies with ∆z > 1, mainly
in the redshift range 1.5 < zp < 3. Most of these catastrophic
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COSMOS 30-band phot-zeds 
(ilbert et al 08)

!z / (1+z) = 0.7 -- 1.6 % !!!   to z ~ 3 

galaxies -- Ilbert etal 08   AGN -- Salvato etal 08 

spectz : VLT (Lilly etal), Keck (Capak etal), Magellan (Trump etal)

COSMOS 30 band photo-z (9/08)

Bright (<22.5) X-ray selected

      AGNs

       IR-selected

opt. faint (22.5 – 24)

       24 – 25 mag I

• ~0.7%-1% accuracy photometric redshifts over 0.2<z<1.2

• Large spectroscopic training sample: VLT/zCOSMOS (Lilly); also smaller 
samples from Magellan (Trump); and Keck (Capak)

Thursday, April 21, 2011



N(z) and photo-zed accuracy in COSMOS

Fig. 13.— Redshift distribution from the 2-deg2

COSMOS survey (black solid line), from the 1-
deg2 CFHTLS-D2 field (green dashed line), from
the 4-deg2 CFHTLS-DEEP fields (blue dotted
line, including also D2). CFHTLS-D2 covers 1
deg2 within the COSMOS field. The red long
dashed line is the redshift distribution obtained
by Fu et al. (2008) who fit the CFHTLS-DEEP
photo-z in the magnitude bin 21.5 < i+ < 24.5
and the dashed-dotted line is obtained without the
weight applied for the CFHTLS weak lensing se-
lection (J. Coupon, private communication).

pected from cosmic variance (Ilbert et al. 2006),
it is in excellent agreement with the COSMOS-
30 redshift distribution. This agreement suggests
that the derivation of σ8(Ωm/0.25)0.64 = 0.785 ±
0.043 by Fu et al. (2008) is not suffering from bi-
ases due to the photo-z or significant cosmic vari-
ance.

The COSMOS-30 redshift distribution can be
fit with a parametrization similar to that used by
Fu et al. (2008):

n(z) = A
(za + zab)

(zb + c)
(4)

where A is the normalization factor and a, b and
c are free parameters. The best fit parameters
a, b and c are given in Table 2, as well as the

Fig. 14.— Top panel: Evolution of the redshift
distribution as a function of i+ magnitude in the
COSMOS field. We use the parametrization of Fu
et al. (2008) in different redshift bins. Bottom
panel: Cumulative redshift distribution.

median redshifts. Fig. 14 shows the best fit red-
shift distribution per apparent magnitude bin. As
expected, the median redshift increases at fainter
apparent magnitude, ranging from zm = 0.66 at
22 < i+ < 22.5 to zm = 1.06 at 24.5 < i+ < 25.

6. Summary

This paper presents a new version of the pho-
tometric redshift catalog for the 2-deg2 COS-
MOS survey computed with new ground-based
NIR data, deeper IRAC data and a new set of
12 medium bands from the Subaru Telescope.
The COSMOS photometry now includes a to-
tal of 30 filters – from the UV (GALEX) to the
MIR (Spitzer-IRAC). The photo-z catalogue de-
rived here contains 607,617 sources at i+ < 26.
The 1887 XMM-COSMOS sources (mainly AGN)
are not included in this catalogue; their photo-z
are derived in Salvato et al. (2008) with simi-
larly good accuracy using a set of templates for
composite AGN/galaxies.

The galaxy photo-z were tested and improved
using spectroscopic redshift samples from the

18

Thursday, April 21, 2011



Figure 1: Area covered by the four wide fields and corresponding spectroscopic coverage. Orange
points are duplicated objects observed in two different tiles.

6

Figure 7: Photometric redshifts versus spectroscopic redshifts for the intermediate magnitude sample
21.5 < i < 22.5

12

The CFHTLS-WIDE
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The CFHTLS sample selection

Coupon et al in prep
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Colour-selected 
galaxies in the 
CFHTLS-wide

• Bluer galaxy samples are 
dominated by central 
galaxies

• Redder galaxies have are 
dominated by satellite 
populations

• More luminous galaxies 
are hosted in more 
massive haloes

Coupon et al in prep

Fixed redshift
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Making mass-limited samples

As we only have five optical bands we cannot reliably compute stellar masses, but we 
can try to derive an empirical relationship between mass and B-band luminosity

As expected, this works reasonably well for red populations, but for “blue” and “full” 
populations the slope of the redshift-M/l relationship depends strongly on mass; for 
these populations we use an intermediate relationship. 

Coupon et al in prep
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Observed halo mass scales

Coupon et al in prep

M_min and M1 corresponds to the halo masses required to host one and two central 
galaxies respectively

We use these empirical corrections to transform our samples into approximately mass-
limited ones. We fit M_min and M_1 as a function of redshift and luminosity

At each redshift, more luminous / massive galaxies are hosted by more massive haloes
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Evolution of halo bias with redshift

Red galaxies follow 
closely the “dm 
only” evolution.

Interpretation of 
these results is 
complicated by 
changing red/blue 
luminosity functions 

More luminous 
objects are 
expected to have a 
different bias 
evolution

Coupon et al in prep
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Satellite fractions 

From our best-fitting halo model parameters we can compute the fraction of galaxies 
which are “satellites” and which are “centrals”

The satellite fraction is essentially set by a combination of the halo mass function and 
the halo occupation distribution N(M); halo mass function drops rapidly at high and low 
masses; N(M) for blue galaxies dominated by central galaxies

Can satellite fraction measurements provide useful information about galaxy 
evolution?

Coupon et al in prep
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Redshift evolution of the sat. fraction
Coupon et al in prep

We use our observations to fit a relationship between M1/M_min and M_g and then 
use our halo model to extrapolate our measurements to low redshift

Observations are consistent with this extrapolated halo model: this is consistent with 
the observation that mergers are not a dominant process at z<1 (otherwise we would 
over-predict the satellite fraction at z~0).

Agreement with the lensing results are reassuring.
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Conclusions from CFHTLS

1. Our model fits observations for red galaxy samples 
relatively well, blue samples less well. “Full” samples 
contain a mix of blue and red galaxy populations which 
depend on redshift and luminosity

2. The observed evolution of galaxy properties with redshift 
at z<1 is (largely) consistent with dark matter evolution for L* 
galaxies

3. Some hints for evolution for more massive objects

4. Interpretation of results are complicated by conversion 
between mass and luminosity
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Mass-selected catalogues in COSMOS

• In the CFHTLS data, our 
luminosity selected samples can 
under considerable evolution over 
the redshift range of our sample: in 
g* it is ~1.5 magnitudes! 

• In the COSMOS galaxies we can 
select by stellar mass which 
removes uncertainty in M/L 
conversion

• However, the size of the COSMOS 
field means number of high mass 
haloes are rare, which complicates 
interpretation
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Stellar mass-selected catalogue at z~0.4

PMC contours 
showing covariance 
between the halo 
model  parameters
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Fits for mass-selected samples

• The halo model cannot 
always reproduce perfectly 
the observed clustering 
signal, in particular on 
larger scales; in the 
COSMOS field this is 
because there is a large 
structure at z~0.8

• The transition between 
one-and two-halo terms 
becomes more 
pronounced at higher 
redshift
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High clustering amplitudes at large scales 
in COSMOS

Meneux et al 2009

At z~1 at scales larger than 10 h{-1}Mpc, COSMOS has more power on large scales 
compared to other fields

This seems to be caused by the presence of rich structures in the field at z~1 
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Halo mass scale evolution at z~2

At lower redshifts, our results are consistent with CFHTLS measurements, namely halo 
masses at M1/M_min which remains constant 0<z<1

However, in all our samples we detect strong evolution of M_min and M1 over the 
redshift range 1<z<2; at higher redshifts, M1 and M_min rise rapidly

Can understand these results in terms of the evolution of the stellar mass function
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Halo mass / stellar mass relationship

z=0

Guo et al 2010

Efficiency of star-formation depends on 
halo mass

Different physical processes act in low 
mass and high mass haloes to reduce star-
formation efficiency 

In high-mass haloes, AGN feedback 
suppresses star formation

In lower-mass haloes, supernovae-driven 
winds can have the same effect

In addition, the halo mass at which star-
formation is the most efficient can move 
from high halo masses to low halo masses 
at lower redshifts (another manifestation of 
the “downsizing” phenomena)

Can we make measurements of these 
phenomena in the CFHTLS/COSMOS?
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How do haloes fill with galaxies?

Zehavi 2010

M_t represents the “transition 
mass” which moves to 
progressively higher halo 
masses at higher redshifts

Coupon et al in prep
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How haloes fill with galaxies (2): 
extension to high redshifts

In our mass-
selected samples, 
at higher redshifts, 
our samples 
deviate from from 
the local-redshift 
relationship

In higher mass 
haloes, star-
formation is 
suppressed (by 
AGN feedback?) 

The baryonic 
mass fraction in 
massive haloes 
does not change
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Halo mass evolution

• Samples are selected to have a 
constant stellar mass with 
redshift

• Is the change in halo mass with 
redshift consistent with 
hierarchical merging seen in 
large N-body simulations? 

• We can compare with the 
fitting formula given by Zhao et 
al. (2009) based on merger 
trees in numerical simulations; 
average halo mass evolution 
agrees well with this.
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Conclusions and prospects

Clear trends are observed between luminosity, halo mass and 
satellite fraction in the CFHTLS but interpreting these results is 
“complicated” by the presence of significant luminosity 
evolution

At z<1 halo evolution follows closely the dark matter evolution

Mass-selected samples evolve at higher redshifts: mass fraction 
decreases at higher redshifts.

What’s next: Add near IR data to the CFHTLS survey and 
increase the depth of Near-IR COSMOS: UIltravista survey. First 
year of ultra-vista data is collected. Precise stellar mass 
estimates for a wider range of halo masses
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