Intermediate-mass black holes in globular clusters

the mass-segregation tracer

Mario Pasquato

Bologna, March 2011

Mario Pasquato

Intermediate-mass black holes in globular clusters

・ 同 ト ・ 三 ト ・ 三 ト

Globular Clusters in short

- Among the oldest objects known
- About 200 objects in the Milky Way
- Size: ≈ 1 10 pc
- Mass: $\approx 10^5 M_{\odot}$
- Considered simple...
 - stellar evolutionary lab
 - truncated maxwellian models
- ...actually surprising
 - multiple populations

[e.g. Bedin et al. 2004, Piotto et al. 2007]

- exotica (e.g. blue stragglers)
- cuspy profiles

[Noyola & Gebhardt 2006, 2007]

M 15 (POSSII J image)

Globular Clusters may host the elusive IMBHs

- Intermediate Mass Black Holes (IMBHs) are black holes with masses in the $10^2 10^5 M_{\odot}$ range
- Expected from theoretical predictions, but still not firmly detected
- Detection claims date back at least to the seventies
 [e.g. Bahcall, Ostriker 1975; Silk, Arons 1975; Newell et al. 1976]
- Globular clusters are an high density environment
- Stellar runaway merging or stellar-mass black-hole merging could produce IMBHs
- A definitive detection would have momentous implications on different fields

If found in Globular Clusters, IMBHs then would...

If found in Globular Clusters, IMBHs then would...

- ...be dragged to the Galactic center by dynamical friction, contributing to super-massive black-hole formation
- ...accrete neutron stars and stellar-mass black-holes, emitting gravitational radiation
- ...probably be produced in the cluster environment: how?
- ...explain some X-ray emission, expecially ULXs
- ...influence the dynamical evolution of host clusters

Unfortunately no definitive detection yet!

Suggested evidence that an IMBH is present:

- Luminosity density profile cusps [see Bahcall & Wolf 1976; Noyola & Gebhardt 2006, 2007]
- Velocity dispersion cusps [Noyola et al. 2008]
- Larger cluster core [Baumgardt 2005, Trenti 2007]
- Ultra Luminous X-ray sources $(L_X > 10^{39} erg/s)$
- Millisecond pulsars [D'Amico et al. 2002]
- High-velocity stars [Yu & Tremaine 2003]

Many claims but no undisputed detection.

- Developed a new, model-independent method to obtain globular cluster structural parameters
- Applied extensive visualization, exploratory data analysis tools to the resulting dataset
- Developed a framework to test for IMBH presence based on a new indicator: mass segregation

Mass segregation: a promising indirect tracer for IMBHs

Mass segregation fingerprint:

- Massive stars segregate towards the center of a stellar system, lighter stars move outside and preferentially evaporate
- An IMBH quenches mass segregation [Baumgardt et al. 2004, Trenti et al. 2007, Gill et al. 2008]
- The effect can be measured in well relaxed GCs

Mario Pasquato Intermediate-mass black holes in globular clusters

Measuring mass segregation

- feasible with detailed star counts
- mass segregation → average mass ⟨m⟩ of MS stars higher in center wrt half-mass radius
- we measure $\langle m \rangle(r) \langle m \rangle(r_h)$

Pasquato et al. 2009, Beccari, Pasquato et al. 2010

Mass-segregation: simulations

Pasquato et al. 2009 NBODY6), 16k to

- Direct N-body (NBODY6), 16k to 32k particles, no softening, galactic tidal interaction
- IMBH with $M \approx 0.01 M_{GC}$ in half of the simulations
- Broad array of initial conditions:
 - Different IMFs (Miller & Scalo, Salpeter)
 - Different primordial binary fractions
- a differential measurement, robust against IMF change
- 2σ shaded areas at relaxation

Mass-segregation: observations

- NGC 2298 chosen for deep
 ACS photometric data
- Small size, almost 1:1 star-to-simulated particle ratio
- HST/ACS field contains $\approx 2r_h$
- Data reduction [de Marchi & Pulone 2007] gives detailed star counts
- 0.2 M_☉ stars still have 50% completeness in the core
- Low background contamination
- Is relaxed: t_h < 1 Gyr</p>

Comparing simulations to observations

- Only projected simulation data is used
- Finite FOV effects are imposed when "observing" simulations
- NGC 2298 data overlap with NO IMBH confidence area
- 3σ upper limit on IMBH mass is 300 M_☉

Predicting the mass segregation profile

- present day global MF of NGC 2298 has a distinctive shape due to tidal stripping
- our simulations without an IMBH and with Miller & Scalo IMF match it well when ≈ 70% of initial mass stripped
- they must accurately predict NGC 2298 mass segregation profile

Predicting the mass segregation profile

A more promising candidate: M 10

- From Beccari, Pasquato et al. 2010, mass segregation profile of M 10
- This time the mass corresponding to 50% completeness is 0.26 M_☉
- In any case the data and the IMBH confidence region overlap
- But also some simulations without an IMBH can explain the data... those with primordial binaries

A more promising candidate: M 10

- From Beccari, Pasquato et al. 2010, mass segregation profile of M 10
- Green shaded area corresponds to 5% primordial binaries
- Binaries visually depress mass segregation (they are heavier but shine as singles)
- Binaries quench mass segregation dynamically, by releasing energy in the core
- A binary IMBH degeneracy emerges

Conclusions and future prospects

New methods/techniques introduced:

- framework for comparing simulations and observations of mass segregation
- a new preliminary detection method, based on mass segregation

Scientific results:

- NGC 2298 does not contain an IMBH
- M 10 might contain one but there is a IMBH-binary degeneracy

Perspectives:

- Further development of the simulation-observation comparison framework
 - Active collaboration with Giacomo Beccari (ESO) and Guido de Marchi (ESTEC) for studying the mass segregation of binaries
 - Application to several other GCs with resolved stars
 - A study of how mass segregation evolves over time

Back-up slides

 $< \Xi >$

в

990

- RA: 6h 48m 59.2s, Dec: -36° 0' 19" Harris 2003
- Mass: $3.09 \cdot 10^4 \ M_{\odot}$ McLaughlin & van der Marel 2005
- Half-light radius: 45.4" i.e. 2.35 pc McLaughlin & van der Marel 2005
- True distance modulus: 15.15 mag i.e. 12.6 kpc Harris 2003
- Reddening E(B V): 0.14 mag Harris 2003
- Half-light relaxation time: 2.57 \cdot 10⁸ yr McLaughlin & van der Marel 2005
- Concentration: 1.28 Harris 2003
- Ellipticity: 0.08 Harris 2003
- Metallicity [Fe/H]: -1.85 Harris 2003
- Distance from Galactic center: 15.7 kpc Harris 2003

Our data comes from De Marchi & Pulone (2007):

- ACS bands F606W and F814W used
- Size of field covered: 3.4' · 3.4'
- Completeness calculated in concentric annuli
- 50% completeness for 0.2 $\it M_{\odot}$ stars in the GC center
- Half-mass radius consistently computed from star counts
- Mass-luminosity relation used for MS stars from Baraffe et al. (1997) with [Fe/H] = -1.85
- $\bullet~\approx 10^4~MS$ stars in our sample

Back-up slides - Our simulations

- Simulations from Gill et al. (2008) + an additional four runs:
 - Direct N-Body code: NBODY6 Aarseth 2003, Trenti et al. 2007a
 - 16k to 32k stars, simulated to 20 initial relaxation times (tidal dissolution)
 - Simulations take days to months to run
 - Instantaneous stellar evolution to 12 Gyr using Hurley et al. (2000) tracks
 - Stellar mass black holes up to 10 M_{\odot}
 - Primordial binary fraction either 0 or 10%, flat distribution in binding energy Heggie et al. 2006
 - Miller & Scalo or Salpeter IMF used
 - Control runs with invisible *brown dwarfs* (actually 0.1 to 0.2 M_{\odot} stars)
 - Initial conditions from a moderately concentrated $W_0 = 7.0$ King model, control runs with different concentrations

Merging scenarios:

- Runaway merging of massive stars in dense young clusters Portegies Zwart et al. 2004
- Four-body interactions in dense GCs Miller & Hamilton 2002

Non-merging scenarios:

Population III stars Madau & Rees 2001

The mechanism for forming IMBHs (if any such process ever takes place) is still debated.

The timescale over which two-body encounters between stars attain thermalization of the distribution function is named relaxation time.

In astrophysical units, the half-mass relaxation time is (Djorgovski 1993):

$$t_{rh} = \frac{8.9 \cdot 10^5 yr}{\log(0.4N)} \times \frac{1M_{\odot}}{\langle m_* \rangle} \times \sqrt{\frac{M_{tot}}{1M_{\odot}}} \times \frac{r_{hm}}{1pc} \sqrt{\frac{r_{hm}}{1pc}}$$

-

- Pasquato et al. 2009 ApJ, accepted (astro-ph/0904.3326v1)
- Gill et al. 2008 ApJ, 686, 303
- De Marchi & Pulone 2007 A&A, 467, 107

1

Homology, scaling laws, the virial coefficient I

Now

GCs are virialized systems:

$$2T + U = 0$$

T and *U* can be expressed in terms of a scale mass *M*, scale radius *R*, scale velocity dispersion σ :

$$M = L \cdot \langle \frac{M}{L} \rangle$$

$$SB = -2.5 \log \frac{L}{R^2} + k$$

and we introduce the virial coefficient

$$\mathbf{k_v} = \alpha/\beta$$

$$T = \alpha M \sigma^2$$
 We get:
 $U = -\beta \frac{GM^2}{R}$ $\log R = 2 \log \sigma + 0.4SB + \log \frac{k_v}{M/L} + k$

Homology, scaling laws, the virial coefficient II

- A FP then emerges only if
 - clusters are virialized
 - $\log k_v/(M/L)$ is constant or depends (linearly) on $\log R$ and SB

Naive assumptions:

- *M*/*L* can be assumed equal for all GCs
- King models with only 1 dimensionless shape parameter c which is one-to-one to k_v describe well GCs
- observationally c depends on SB (Djorgovski & Meylan 1994)
- But
 - an IMBH introduces a new dimensional scale quantity (e.g. its mass)
 - this breaks the one-to-one link between c and k_v
 - in eq. log $R = 2 \log \sigma + 0.4SB + \log \frac{k_v}{M/L} + k$ then k_v introduces a noise term

Homology, scaling laws, the virial coefficient III

- IMBHs have the potential to add scatter to the FP
- *k_v* can be measured under the assumption that *M*/*L* is constant

• k_v distribution looks bimodal if central σ used