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Outline

1.
 

Reverberation mapping: principles and 
practice

2.
 

AGN masses from reverberation mapping 
and comparison with other direct methods

3.
 

Scaling relationships and secondary 
methods

4.
 

The “mass ladder”, unknowns and potential 
problems
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Supermassive Black Holes Are Common
•

 
Supermassive black 
holes are found in 
galaxies with large central 
bulge components.

•
 

These are almost 
certainly remnant black 
holes from the quasar 
era.

•
 

To understand accretion 
history, we need to 
determine black-hole 
demographics. M 87, a giant elliptical

SMBH > 3109 M
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Measuring Central Black-Hole Masses
•

 
Virial mass measurements based on motions 
of stars and gas in nucleus.
–

 
Stars

•

 

Advantage: gravitational forces only
•

 

Disadvantage: requires high spatial resolution
–

 

larger distance from nucleus  less critical test

–
 

Gas
•

 

Advantage: can be observed very close to nucleus, high 
spatial resolution not necessarily required

•

 

Disadvantage: possible role of non-gravitational forces 
(radiation pressure)
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Direct vs. Indirect Methods
•

 
Direct methods are based on dynamics 
of gas or stars accelerated by the 
central black hole.
–

 
Stellar dynamics, gas dynamics, 
reverberation mapping

•
 

Indirect methods are based on 
observables correlated with the mass of 
the central black hole.
–

 
MBH

 

–* and MBH

 

–Lbulge

 

relationships, 
fundamental plane, AGN scaling 
relationships (RBLR

 

–L)
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“Primary”, “Secondary”, and 
“Tertiary”

 
Methods

•
 

Depends on model-dependent assumptions 
required.

•
 

Fewer assumptions, little model dependence:
–

 
Proper motions/radial velocities of stars and 
megamasers

 
(Sgr

 
A*, NGC 4258)

•
 

More assumptions, more model dependence:
–

 
Stellar dynamics, gas dynamics, reverberation 
mapping

•

 

Since the reverberation mass scale currently depends on 
other “primary direct”

 

methods for a zero point, it is 
technically a “secondary method”

 

though it is a “direct 
method.”
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Virial Estimators

Source Distance from 
central source    

X-Ray Fe K 3-10 RS 
Broad-Line Region 200104 RS 
Megamasers 4 104 RS 
Gas Dynamics 8 105 RS 
Stellar Dynamics 106 RS 

 

 
In units of the Schwarzschild radius 
RS

 

= 2GM/c2 = 3 ×

 

1013

 

M8

 

cm .

Mass estimates from the
virial theorem:

M = f (r V 2
 

/G)
where
r = scale length of

region
V =

 
velocity dispersion

f = a factor of order 
unity, depends on
details of geometry
and kinematics
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Reverberation Mapping
•

 
Kinematics and 
geometry of the BLR 
can be tightly 
constrained by 
measuring the emission-

 line response to 
continuum variations. 

NGC 5548, the most closely 
monitored Seyfert 1 galaxy

Continuum

Emission line
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Reverberation Mapping Concepts: 
Response of an Edge-On Ring

•
 

Suppose line-emitting 
clouds are on a circular 
orbit around the central 
source.

•
 

Compared to the signal 
from the central source, 
the signal from 
anywhere on the ring is 
delayed by light-travel 
time.

•
 

Time delay at position 
(r,) is 

 
= (1 + cos

 
)r / c


 

= r/c

The isodelay
 

surface is
a parabola:

θcos1
τ




cr


 

=
 

r cos
 

/c
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
 

= r/c

“Isodelay
 

Surfaces”
All points
on an “isodelay
surface”

 
have 

the same extra
light-travel time
to the observer,
relative to 
photons
from the 
continuum
source.


 

= r/c
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•
 

Clouds at intersection of 
isodelay

 
surface and orbit 

have line-of-sight velocities 
V = ±Vorb

 

sin.
•

 
Response time is                 


 
= (1 + cos

 
)r/c

•
 

Circular orbit projects to an 
ellipse in the (V, ) plane.

Velocity-Delay Map 
for an Edge-On Ring
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Thick Geometries
•

 
Generalization to a disk or 
thick shell is trivial. 

•
 

General result is illustrated 
with simple two ring system.

A multiple-ring system
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Observed Response of an 
Emission Line

The relationship between the continuum and emission 
can be taken to be:

Velocity-resolved 
emission-line

light curve

“Velocity-

 
delay map”

Continuum
light curve

Simple 
velocity-delay map

Velocity-delay map is observed line 
response to a -function outburst

( , ) ( , ) ( )L V t V C t d    



Broad-line region
as a disk, 

2–20 light days
Black hole/accretion disk

Time after continuum outburst

Time
delay

Line profile at
current time delay

“Isodelay
 

surface”

20 light days
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Two Simple Velocity-Delay Maps

Inclined Keplerian
disk

Randomly inclined
circular Keplerian orbits

The profiles and velocity-delay maps are superficially similar,
but can be distinguished from one other and from other forms.
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Velocity-Delay 
Maps: Finally!

•
 

Velocity-delay 
maps from LAMP 
and MDM 
campaigns are 
beginning to show 
believable 
structure.

LAMP: Bentz et al. 2010

Arp 151
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LAMP results from Bentz et al. 2010



Emission-Line Lags
• Because the data requirements are relatively modest,
it is most common to determine the cross-correlation 
function and obtain the “lag”

 
(mean response time):

CCF( ) = ( ) ACF( - ) d      
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Reverberation 
Mapping Results

•
 

Reverberation lags 
have been measured 
for nearly 50 AGNs, 
mostly for H, but in 
some cases for 
multiple lines.

•
 

AGNs with lags for 
multiple lines show 
that highest 
ionization emission 
lines respond most 
rapidly  ionization 
stratification



A Virialized 
BLR

•
 

V 
 

R –1/2 for 
every AGN in 
which it is 
testable.

•
 

Suggests that 
gravity is the 
principal 
dynamical force 
in the BLR.

Onken & Peterson

Mrk 110

Kollatschny 2003 Bentz et al. 2009
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Reverberation-Based Masses
•

 
Combine size of BLR with 
line width to get the 
enclosed mass:

M = f (ccent  2 /G)
•

 
Without knowledge of the 
BLR kinematics and 
geometry, it is not possible 
to compute the mass 
accurately or to assess 
how large the systematic 
errors might be.
–

 

Low-inclination thin disk (f 

 1/sin2

 

i ) could have a huge 
projection correction.
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Evidence Inclination Matters
•

 
Relationship between R 
(core/lobe) and FWHM.
–

 

Core-dominant are more face-on 
so lines are narrower.
Wills & Browne (1986)

•
 

Correlation between radio

 

and 
FWHM
–

 

Flat spectrum sources are closer 
to face-on and have smaller line 
widths

•

 

radio

 

> 0.5: Mean FWHM = 6464 
km s-1

•

 

radio

 

< 0.5: Mean FWHM = 4990 
km s-1

•

 

Width distribution for radio-quiets 
like flat spectrum sources (i.e., 
closer to face-on)
Jarvis & McLure (2006)
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Plausible BLR Geometry
•

 
Unified models suggest 
that Type 1 AGNs are 
observed at inclinations 
0º

 


 
i 

 
~45º.

–

 

Lags are unaffected if 
axial symmetry and 
isotropic line emission

–

 

Line widths can be 
severely affected by 
inclination.

•

 

A “generalized thick 
disk”

 

parameterization:

A plausible disk-wind concept
based on Elvis (2000)

2 2
1
( sin )f a i


Collin et al. (2006)
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The AGN MBH
 

–* Relationship
•

 
Assume slope and zero 
point of most recent 
quiescent galaxy 
calibration.

•
 

f 
 

= 5.25 ±
 

1.21
•

 
Maximum likelihood 
places an upper limit on 
intrinsic scatter        
log

 
MBH

 

~ 0.40 dex.
–

 
Consistent with 
quiescent galaxies.

Woo et al. (2009)
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The AGN MBH
 

–Lbulge
 

Relationship
•

 
Line shows best-fit to 
quiescent galaxies

•
 

Maximum likelihood 
gives upper limit to 
intrinsic scatter       
log

 
MBH

 

~ 0.17 dex.
–

 
Smaller than 
quiescent galaxies 
(log

 
MBH

 

~ 0.38 dex).
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Stellar and gas dynamics requires resolving the black hole radius of influence r*

Quiescent
 

galaxies            RM AGNs



Black Hole Mass Measurements 
(units of 106

 
M

 

)
Galaxy NGC 4258 NGC 3227 NGC 4151
Direct methods:
Megamasers 38.2 ±

 
0.1 N/A N/A

Stellar dynamics 33 ±
 

2 7–20 < 70
Gas dynamics 25 –

 
260 20+10

-4 30+7.5
-22

Reverberation N/A 7.63 ±
 

1.7 46 ±
 

5

References: see Peterson (2010) [arXiv:1001.3675]

Uncertainties are statistical, not systematic
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Masses of Black Holes in AGNs
•

 
Stellar and gas dynamics requires higher 
angular resolution to proceed further.
–

 
Even a 30-m telescope will not vastly expand the 
number of AGNs with a resolvable r*

•
 

Reverberation is the future path for direct 
AGN black hole masses.
–

 
Trade time resolution for angular resolution.

–
 

Downside: resource intensive.
•

 
To significantly increase number of measured 
masses, we need to go to secondary 
methods.
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BLR Scaling with Luminosity

2
HH

24
)H(

rn
L

cnr
QU 


• To first order, AGN 
spectra look the same

 Same ionization
parameter U

 Same density nH

r 
 

L1/2
SDSS composites, by luminosity

Vanden

 

Berk

 

et al. (2004)
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BLR Radius-Luminosity 
Relationship

•
 

R 
 

L½

 relationship was 
anticipated long 
before it was 
well-measured. 

Koratkar & Gaskell 1991
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BLR Radius-Luminosity 
Relationship

•
 

Kaspi et al. (2000) 
succeeded in 
observationally 
defining the R-L 
relationship
–

 
Increased luminosity 
range using PG 
quasars

–
 

PG quasars are 
bright compared to 
their hosts

Kaspi et al. 2000

R 
 

L0.7
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Progress in Determining the 
Radius-Luminosity Relationship

Original PG + Seyferts
(Kaspi et al. 2000) 

2

 

7.29
R(H) L0.76

Expanded, reanalyzed 
(Kaspi et al. 2005) 

2

 

5.04
R(H) L0.59



NGC 4051
z = 0.00234

log Lopt

 

= 41.8

Mrk 79
z =0.0222 

log Lopt

 

= 43.7

PG 0953+414
z = 0.234

log Lopt

 

= 45.1

Measurement of host-galaxy properties is difficult even 
for low-z AGNs
-

 
Bulge velocity dispersion σ*

-
 

Starlight contribution to optical luminosity

Images courtesy of M. Bentz
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Aperture Geometries 
for Reverberation-

 Mapped AGNs

•
 

Large apertures 
mitigate seeing effects.

•
 

They also admit a lot of 
host galaxy starlight!
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Progress in Determining the 
Radius-Luminosity Relationship

Original PG + Seyferts
(Kaspi et al. 2000) 

2

 

7.29
R(H) L0.76

Expanded, reanalyzed 
(Kaspi et al. 2005) 

2

 

5.04
R(H) L0.59

Starlight removed 
(Bentz et al. 2009)

2

 

4.49
R(H) L0.49



38

How Much Intrinsic Scatter?

•
 

Fundamental limit on 
accuracy of masses 
based on R-L.

•
 

Dictates future 
observing strategy:
–

 

If intrinsic scatter is large, 
need reverberation 
programs on many more 
targets to overcome 
statistics.

–

 

If scatter is small, win 
with better reverberation 
data on fewer objects.
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Highest quality data only
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R-L Relationship

•
 

Intrinsic scatter ~0.11 dex
•

 
Typical error bars on best reverberation 
data ~0.09 dex

•
 

Conclusion: for H
 

over the calibrated 
range (41.5 

 
log L5100 (ergs s-1) 

 
45 at 

z 
 

0), R-L is as effective as 
reverberation.



Phenomenon: Quiescent
Galaxies

Type 2
AGNs

Type 1
AGNs

Measurement of Central Black Hole Masses

Direct
Methods:

Stellar, gas
dynamics

Stellar, gas
dynamics

MegamasersMegamasers 1-d
RM
1-d
RM

2-d
RM
2-d
RM

Fundamental
Empirical
Relationships:

MBH

 

–

 

* AGN

 

MBH

 

–

 

*

Indirect
Methods:

Fundamental
plane:

e

 

, re

 

 * 
 MBH

[O III] line width
V  *  MBH

Broad-line width V
& size scaling with

luminosity
R 

 

L1/2

 

 MBH

Application:
High-z AGNsLow-z AGNs

BL Lac 
objects



Black Hole Mass Measurements 
(units of 106

 
M

 

)
Galaxy NGC 4258 NGC 3227 NGC 4151
Direct methods:
Megamasers 38.2 ±

 
0.1 N/A N/A

Stellar dynamics 33 ±
 

2 7–20 < 70
Gas dynamics 25 –

 
260 20+10

-4 30+7.5
-22

Reverberation N/A 7.63 ±
 

1.7 46 ±
 

5
Indirect Methods:
MBH

 

–* 13 25 6.1
R–L scaling N/A 15 65

References: see Peterson (2010) [arXiv:1001.3675]
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Scaling Relationships: 
Use with Caution

•
 

When you think you’re measuring mass, 
you’re really measuring

•
 

When you think you’re measuring 
Eddington ratio, you’re really measuring

2 1/ 2 2
BH ( ) ( )M R V L V   

1/ 2
1/ 2 2 2

Edd BH ( )
L L L LL M L V V  

 
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R-L Relationship for C IV
 

1549
•

 
First used by Vestergaard 
(2002) to estimate BH masses 
at high-z.

•
 

Pros:
–

 

Limited data suggest same R-L 
slope as H

 

(despite Baldwin 
Effect).

–

 

Consistent with virial relationship, 
at least in low-luminosity AGNs.

•
 

Cons:
–

 

Often strong absorption, usually in 
blue wing.

–

 

Extended bases (outflows), 
especially in NLS1s.

Kaspi et al. 
(2007)
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Netzer et al. (2007)
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An Overlooked Issue
•

 
Accurate measurement of 
line widths becomes 
problematic at S/N < 10.
–

 
Error distribution becomes 
skewed and non-normal.

–
 

At very low S/N, the number 
of outliers (masses off by 
an order or magnitude or 
more) increases 
significantly.

•
 

Claims that C IV
 

cannot be 
used for BH masses are 
based on low-S/N spectra.

Denney et al. 2009, ApJ, 692, 246
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original

S/N ~ 20

S/N ~ 10

S/N ~ 5



Another Overlooked Issue

No 1350 Å

 

/5100 Å

 

color correction. 1350 Å

 

/5100 Å

 

color correction included.

C IV

 

and H/H

 

mass estimates are based on UV and optical luminosities, 
respectively.  A color correction needs to be included.
In sample below, color term decreases scatter by factor of 2!

Assef, Denney et al. (2011) arXiv:1009.1145
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Mass-Ladder Issues
•

 
Direct methods
–

 
Reverberation mass-scale zero point

•
 

Importance of radiation pressure 
•

 
Independence from quiescent-galaxy scale

–

 

BLR geometry, kinematics

–
 

Dynamical Methods
•

 
Uncertainties in distances

•
 

Dark matter halos, orbit libraries, other 
resolution-dependent systematics
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Mass-Ladder Issues

•
 

Scaling relationships
–

 
Line-width 
characterization

•
 

Simple prescription that 
is unbiased wrt

 
to L, 

L/LEdd

 

, profile, variability, 
etc.

–
 

Use of C IV
 

emission 
line

•
 

Identification and 
mitigation of systematics

•
 

R–L validation



A New Reverberation 
Methodology

•
 

Statistical modeling of 
light curves can be 
used to fill in gaps with 
all plausible flux values.
–

 

Based on statistical 
process modeling by 
Press, Rybicki, & Hewitt 
(1992), Rybicki

 

& Press 
(1992), and Rybicki

 

& 
Kleyna

 

(1994).
–

 

“Stochastic Process 
Estimation for AGN 
Reverberation”

 

(SPEAR)
•

 
A likelihood estimator 
can be used to identify 
the most probable lags.

Zu, Kochanek, & Peterson 2010
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•
 

Uncertainties are 
computed self-

 consistently and 
included in the 
model.

•
 

Trends, correlated 
errors are dealt 
with naturally.

•
 

Can simultaneously 
fit multiple lines 
(which effectively 
backfill gaps in the 
time series).
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Results are in good agreement with results from 
CCF and formal errors are somewhat smaller.
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Possible Importance of 
Radiation Pressure

•
 

Marconi et al. suggest 
that BH masses are 
underestimated because 
of failure to account for 
radiation pressure.
–

 
Important if BLR clouds 
have column densities       


 
1023

 

cm–2.

Marconi et al. (2008)
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Possible Importance of 
Radiation Pressure

•
 

Differences between RM 
and R-L masses 
decreases with radiation 
correction.

•
 

NLS1s lie closer to the 
MBH

 

–* relationship

Marconi et al. (2008)

No correction With correction



Reiteration: Evidence That Reverberation-
 Based Masses Are Reliable

3.
 

MBH

 

–
 

Lbulge

 

relationship

1.
 

Direct comparisons

2. MBH

 

–
 

*

 

relationship





	Masses of Black Holes in Active Galactic Nuclei�
	Principal Current Collaborators
	Outline
	Supermassive Black Holes Are Common
	Measuring Central Black-Hole Masses
	Direct vs. Indirect Methods
	“Primary”, “Secondary”, and “Tertiary” Methods
	Virial Estimators
	Reverberation Mapping
	Reverberation Mapping Concepts: Response of an Edge-On Ring
	“Isodelay Surfaces”
	Velocity-Delay Map for an Edge-On Ring
	Thick Geometries
	Observed Response of an Emission Line
	Slide Number 15
	Slide Number 16
	Two Simple Velocity-Delay Maps
	Velocity-Delay Maps: Finally!
	Slide Number 19
	Emission-Line Lags
	Reverberation Mapping Results
	A Virialized BLR
	Reverberation-Based Masses
	Evidence Inclination Matters
	Plausible BLR Geometry
	The AGN MBH–* Relationship
	The AGN MBH–Lbulge Relationship
	Slide Number 28
	Black Hole Mass Measurements (units of 106 M)
	Masses of Black Holes in AGNs�
	BLR Scaling with Luminosity
	BLR Radius-Luminosity Relationship
	BLR Radius-Luminosity Relationship
	Slide Number 34
	Slide Number 35
	Aperture Geometries for Reverberation-Mapped AGNs
	Slide Number 37
	How Much Intrinsic Scatter?
	Slide Number 39
	R-L Relationship
	Slide Number 41
	Black Hole Mass Measurements (units of 106 M)
	Scaling Relationships: �Use with Caution
	R-L Relationship for C IV 1549
	Slide Number 45
	An Overlooked Issue
	Slide Number 47
	Another Overlooked Issue
	Mass-Ladder Issues
	Mass-Ladder Issues
	A New Reverberation Methodology
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Possible Importance of �Radiation Pressure
	Possible Importance of �Radiation Pressure
	Reiteration: Evidence That Reverberation-Based Masses Are Reliable
	Slide Number 58

