The Impact of, and Evidence for, Stellar Migration in Disk Galaxies

Victor P. Debattista

In collaboration with: R. Roškar, S. Loebman, A. Clarke,

P. Yoachim, D. Radburn-Smith, G. Stinson, T. Quinn, J. Wadsley

Outline

 Stellar migration: The mechanism The outer disk Solar neighborhood Thick disk contribution

Solar Metallicity vs Local

Argued that solar metallicity is much higher than that of stars in the solar neighborhood. Concluded that the sun formed at a radius R ~ 6.6 kpc

Wielen et al. 1996

Link back to: arXiv, form interface, contact.

Larger and larger radial excursions require a hotter and hotter disk. Velocity dispersion of disks observable

Migration WITHOUT Heating

Shuffling With Little Heating

Strong exchanges at CR resonance; even larger for more circular orbits

$$\Delta J_{R} = (\Omega_{p} - \Omega) \Delta L/\kappa$$

But negligible heating associated with the migration

Sellwood & Binney 2002

Unconstrained N-Body Simulation

Now many spirals form

Histograms show final R versus initial range (dotted lines)

But initial conditions here assume a form for the disk density and kinematics

Sellwood & Binney 2002

The State of Galaxy Formation Simulations

Governato et al. 2006

Roskar et al. 2010

Simple Picture of Galaxy Formation

e.g. Fall & Efstathiou (1980), Dalcanton et al. (1997) Also viscous evolution - Lin & Pringle (1987), Ferguson & Clarke (2001)

Simulations

Approximate disk formation via dissipational collapse after last major merger using SPH code GASOLINE

- 1M particles in each component, $M_{\rm vir}$ = 10^{12} M_{\odot}
- 10% baryons by mass
 - ~ 10° M_{\odot} per DM particle
 - initially $1.4 \times 10^5 \text{ M}_{\odot}$ per gas $4.6 \times 10^4 \text{ M}_{\odot}$ per star
- 50 pc force resolution for baryons, 100 pc for DM
- star formation and feedback (Stinson et al. 2007) including feedback from SN Ia, II and stellar winds

Advantages:

- fully self-consistent evolution
- no ad-hoc assumptions about the disk
- full modeling of dynamical processes
- star formation and feedback allow for direct comparisons with observations (age, metallicity (Fe & O), SFR etc.)

Data: Geneva-Copenhagen survey (Holmberg 2009)

Simulation

Confirming Role of Spirals

a) Fourier expansion -> b) power spectrum -> c) identify patterns/resonances

Migrating particles are overwhelmingly found at the CR of spirals: inward migrators ahead of the spiral while outward migrators are behind it

Roškar+ 12

Hints of long-lived modes

van der Kruit 1979

60% truncated 10% pure expo.

Disk (to break radius) grows from the inside out

Roškar et al. 2008a

Outer Disk Kinematics

All

Circular

Most particles in the outer disk still retain nearly circular orbits

Sample of Orbits Ending in Outer Disk

Comparison to NGC 4244

simulation

HST star count profiles

 R_{br} the same for all pops

de Jong+ 2007

Tieke

Justers

Outer Disk Stellar Pops

Migration is basically a random walk, so older stars get to larger distance from formation

Expect the mean age of disk stars to increase beyond the break

The variation of outer disk scale-length for different age stellar bins constrain migration rates

NGC 6155

Break at 34" (Pohlen & Trujillo 2006)

Data using VIRUS-P on 2.7-m HJS telescope 1.7' x 1.7' fov. Rebin data to S/N ~45 beyond break

Fit the spectra using GANDALF (Sarzi et al. 2006) assuming exponential SFH and varying metallicity

Yoachim+ 2010, 12

Radburn-Smith+ 2012

NGC 7793

Implications for Galactic Archaeology

Roškar et al. 2008b

Most of the stars in the solar neighborhood (7 < R < 9 kpc) formed elsewhere. The metal poor ones come from a wide range of radii, including from outside the solar neighborhood, while the metal rich ones come from inside the solar radius.

Assuming stars remain in situ, we find a significant gradient and low dispersion in AMR. But AMR is flattened & broadened by migration, which is true also for stars on circular orbits. Note: increase in metallicity of old stars and increasing scatter with age Roškar+ 08b; Schönrich & Binney 09

Thick Disk Formation

Gilmore & Reid 1983

Effect on Vertical Direction

Controlling for Age

 $\Delta R [kpc]$

Roskar+ 2013

Stars form with a single exponential profile but develop a double component profile

Loebman+ 11

SDSS at Thin-Thick Transition

Decreasing metallicity and v_{rot} with height

Age, velocity and metallicity all correlate with height above the mid-plane.

But there is little correlation between velocity and metallicity, as found by SDSS

Kinematic Selection of Thick Disk 200 $(U_{LSR}^{2} + W_{LSR}^{2})^{1/2}$ [km/s · thick · thin 0.4halo 150 halo 0.2 100 [o/Fe] 50 0.0 -0.2 -200 -150 -100 -50 2 Gyr • 0 Gvr • V_{LSR} [km/s] -0.40 50 100 150 200 250 $(V_{LSR}^2 + U_{LSR}^2 + W_{LSR}^2)^{1/2}$ [km/s] 0.2 thin . thick . 0.0 $<[\alpha/Fe]>$ separates for a pure ou/Fe] kinematic selection of a local sample: 0.2 7-9 kpc in R and 0-0.3 kpc in z. -0.4 Bensby+2003, 2005; Feltzing 2006 -1.0 -0.5 0.0 0.5 [Fe/H] 0.1 dex cf Bensby+ 2005 Loebman+ 11

Splitting by [a/Fe]

The raw distribution of stars in the $[\alpha/Fe]$ -[Fe/H]plane is double peaked, suggesting separate thin and thick disk populations

Correcting for the selection function, only one peak remains in [α / Fe]-[Fe/H]

Bovy+ 2012abc

Thin disk

Spirals arising in the thin disk are able to drive migration also of stars in a dynamically distinct thick disk

Thick disk

Solway+ 12

Conclusions

★ Contrary to decades of assumption, a mechanism for mixing stars radially without heating exists: scattering at corotation off transient spirals. This can substantially alter stellar populations in disks.

★ A large fraction of stars in outer disks probably formed at smaller radii and migrated outwards. There is a growing body of evidence that disks get increasingly old outwards of the break.

★ In the solar neighborhood, roughly half the stars could have formed elsewhere and migrated here. This means that AMR is flattened and broadened.

* Migration may also be the explanation for at least part of the thick disk. Many of the properties and trends of the thick disk can be qualitatively matched by migration