

Large-scale clustering of Active Galactic Nuclei What can we learn?

Mirko Krumpe (ESO, UCSD) mkrumpe@eso.org

Collaborators: Takamitsu Miyaji (UNAM-E, UCSD), Alison L. Coil (UCSD), Hector Aceves (UNAM-E), Bernd Husemann (AIP)

Galaxies cluster!

SDSS DR7

Miguel A. Aragon (JHU) Mark Subbarao (Adler P.) Alex Szalay (JHU)

Outline

- introduction to AGN clustering measurements
- AGN clustering measurements through cross-correlation functions
- Halo Occupation Distribution modeling of AGNs
- · current picture of AGN clustering

2dFGRS

What are we talking about?

What are we talking about?

Large-scale clustering of Active Galactic Nuclei

NASA, N. Benitez (JH

What drives clustering?

Based on Zheng & Weinberg 2007, Weinberg 2002

National Center for Supercomputer Applications(Kravtsov & Klypin)

2) Galaxy distribution within DMHs

NASA, ESA, Jullo, Natarajan, Kneib

AGN clustering measurements: Why?

Can test different AGN evolution models by measuring the observed clustering of AGN, ideally as a function of luminosity, redshift, BH mass, accretion rate

AGN clustering measurements can constrain:

- host dark matter halo mass
 - host galaxy type
 - environment

(clues on AGN/galaxy co-evolution)

- fueling mechanism
 - AGN lifetime
- central vs. satellite fraction

cosmology

How do we measure large-scale clustering?

AGN clustering measurements: How?

The 2-point correlation function $\xi(r)$ measures the spatial clustering of a class of objects in excess of a Poisson distribution (Peebles 1980) dP = n (1 + $\xi(r)$) dV

- ξ(r) = 0, if objects are distributed randomly in the universe
- ξ(r) > 0, if objects are more strongly clustered than a random distribution

In practice: via counting pairs of objects with a given separation $\xi(r) = (DD(r) / DR(r)) - 1$

AGN clustering measurements: How?

two major challenges

• $\xi(r) = (DD(r)/DR(r)) - 1 \Rightarrow$ generate catalogue with randomly distributed sources having the same observational bias

• no direct measurement of distance \Rightarrow redshift is used to derive distances

Mirko Krumpe

AGN clustering measurements: How?

two major challenges

ξ(r) = (DD(r)/DR(r)) - 1 ⇒ generate catalogue with randomly distributed sources having the same observational bias

• no direct measurement of distance \Rightarrow redshift is used to derive distances

instead of measuring $\xi(r)$

Calculate $\xi(r_P,\pi)$; r_P - projected distance, π - line-of-sight separation

Galaxy clustering measurements

to robustly measure clustering, you need:

- spectroscopic redshifts
- large volumes
- well-defined and replicable selection function (spatial + z)

large area surveys (2dF, SDSS, DEEP2, AGES) provide many thousands of galaxies

⇒ Galaxy clustering depends on luminosity, color, morphology:

 brighter / redder / elliptical galaxies are more clustered than fainter / bluer / spiral galaxies

Only a small fraction of galaxies contain an AGN \Rightarrow small number statistics limits clustering studies AGN clustering measurements through cross-correlation functions

RASS AGN sample

1. AGN sample: ROSAT All-Sky Survey (RASS)

(Voges et al. 1999, Anderson et al. 2003, 2007)

color = soft-band hardness ratio (soft to hard: red, yellow, green, blue)

- still the most sensitive all-sky X-ray survey, with ~110,000 sources
- sensitive in soft X-rays (0.1-2.4 keV)
- sampled unabsorbed (6224 type I)
 AGNs, not very sensitive to absorbed
 AGNs (515 type II)
- spectroscopic redshifts from SDSS
- $L_X \sim 10^{43}$ - $10^{45} \text{ erg s}^{-1}$

SDSS AGN sample

2. AGN sample: SDSS AGNs

(Schneider et al. 2010, Richards et al. 2002)

- ~18 candidates per deg²
- 105,783 broad-line AGNs
- fainter i~15 mag
- M_i ≤ -22 mag

Mirko Krumpe

Finding the right tracer set

requirements for tracer set:

high number density (>> AGN) & well-defined and replicable selection

AGN clustering measurements through CCF

From the AGN-galaxy cross-correlation measurement:

- ⇒ divide by the measured auto-correlation of tracer galaxies
- ⇒ infer the AGN auto-correlation function (Krumpe et al. 2010)

bias parameter

(how strongly a particular class of objects is clustered relative to DM density distribution)

average mass of the host dark matter halos (compare to dark matter simulations)

(Coil et al. 2009)

BL-AGN/galaxy bias parameter vs. redshift

AGN bias parameter vs. redshift

Halo Occupation Distribution modeling of ROSAT broad-line AGNs

HOD modeling of ROSAT BL-AGNs: Why?

instead of typical dark matter halo mass:

- \Rightarrow full distribution of AGNs as a function of DMH mass
- \Rightarrow currently popular way to model galaxy correlation functions
- observers see the universe as galaxies, AGNs, clusters etc..
 - $\boldsymbol{\cdot}$ theorists see the universe as a bunch of DMH

⇒ HOD gives recipe how to populate DMHs with observable objects

determine number of central and satellite AGNs

HOD modeling of ROSAT BL-AGNs: How?

⇒ model the correlation function as the sum of the contributions from pairs:

- within the same DMH
- from different DMHs

 $ξ_{CCF} = ξ_{CCF,1h} + ξ_{CCF,2h}$

(Miyaji, Krumpe, et al. 2011)

HOD modeling of ROSAT BL-AGNs

(Miyaji, Krumpe, et al. 2011)

- \cdot critical DMH mass (M $_{\rm CR}$) above which it can host an AGN
- power-law slope α (increase of N_{AGN} with DMH mass)

models preferred where the AGN/galaxy fraction among satellites decreases with DMH mass beyond M_{DMH} > 10¹² h⁻¹ M_{SUN}

Mirko Krumpe

Current picture of AGN clustering

Mirko Krumpe

Current picture of AGN clustering

low redshift (z<0.5)

- broad-line and narrow-line cluster like ≥L* galaxies or a small galaxy group of ~L*; AGN/galaxy fraction decreases with M_{DHM}
- no statistically convincing difference in the clustering of X-ray and optically selected broad-line AGNs
- weak luminosity dependence of the clustering for broad-line AGNs (high L_x AGNs \Rightarrow cluster higher \Rightarrow similar to red galaxies)

high redshift

- X-ray selected AGNs appear to cluster more strongly than optically selected AGNs => real?
 why: different populations, different luminosities?
- $\boldsymbol{\cdot}$ mergers do not account for the majority of moderate L_X AGNs

Conclusions

 large-scale clustering measures the distribution of matter in the universe (commonly measured with the 2 point correlation function)

- AGN clustering measurements extend to higher redshifts than galaxies and test an important phase in galaxy evolution
 - Cross-correlation measurements are a very powerful tool to determine AGN clustering at low redshifts (if tracer set)
 very high precision, very low systematics
 complete picture of AGN clustering at low & high redshifts is emerging

Conclusions

together with HOD modeling
 ⇒ new insights into AGN physics, AGN/galaxy co-evolution, and cosmology
 ⇒ constrain: host dark matter halo mass distribution, host galaxy type, fueling mechanism, AGN lifetime, central vs. satellite fraction

(Krumpe et al. 2010; Miyaji, Krumpe, et al. 2011; Krumpe et al. 2012)

recent review on clustering of X-ray selected AGNs ⇒ Cappelluti et al. 2012, arXiv:1201.3920 "AGN Clustering in the X-ray Band"

Future

eROSITA

• X-ray regime is one of the most efficient wavelength ranges to select AGNs

eROSITA is expected to detect ~ 3 million AGNs and will boost the research field of AGN clustering measurements