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Wide field Nearby Galaxy-cluster Survey wWiNGS - Fasano+ 2006):
0.04<z<0.07
Spectroscopic data of 21 clusters
Morphologies determined on V images, automatic classification with
MORPHOT (Fasano+ 2011)
Stellar masses determined using the relation between Lg and B-V color
(Bell & De Jong 2001), Kroupa (2001) IMF adopted
Mass limited sample, limit: log(M/Mgun)>9.8

Local density computed from the circular area containing the 10 nearest
projected neighbors, for members with My<=-19.5
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Wide field Nearby Galaxy-cluster Survey wWiNGS - Fasano+ 2006):
0.04<z<0.07
Spectroscopic data of 21 clusters
Morphologies determined on V images, automatic classification with
MORPHOT (Fasano+ 2011)
Stellar masses determined using the relation between Lg and B-V color
(Bell & De Jong 2001), Kroupa (2001) IMF adopted
Mass limited sample, limit: log(M/Mgun)>9.8
Local density computed from the circular area containing the 10 nearest
projected neighbors, for members with My<=-19.5
Padova Millennium Galaxy Group Catalog (PmM2Gc - calvi+ 2011):
e 0.04<z<0.1
Spectroscopic data of ~38deg? from the Millennium Galaxy Catalog
Rich sample of groups, binary systems and isolated galaxies
Stellar masses determined using the relation between Lg and B-V color
(Bell & De Jong 2001), Kroupa (2001) IMF adopted
Mass limited sample, limit: log(M/Msun)>10.25
Local density computed from the circular area containing the 5 nearest
projected neighbors within +/- 1000 km/s, for galaxies with My<=-19.85
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IMACS Cluster Building Survey (cBs - Oemler+ 2012):

P 0.25<7z<0.5
Spectroscopic data of clusters, groups and field
Stellar masses determined using the relation between Lg and B-V color
(Bell & De Jong 2001), Kroupa (2001) IMF adopted
Mass limited sample, limit: log(M/Msun)>10.5
Local density computed from the rectangular area containing the 5
nearest projected neighbors, for members with r<=22.5. For field galaxies,

neighbors within +/- 1000 km/s have been considered.
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IMACS Cluster Building Survey (cBs - Oemler+ 2012):

P 0.25<7z<0.5
Spectroscopic data of clusters, groups and field
Stellar masses determined using the relation between Lg and B-V color
(Bell & De Jong 2001), Kroupa (2001) IMF adopted
Mass limited sample, limit: log(M/Msun)>10.5
Local density computed from the rectangular area containing the 5
nearest projected neighbors, for members with r<=22.5. For field galaxies,
neighbors within +/- 1000 km/s have been considered.

ESO Distant Cluster Survey (EDiscs - White+ 2005):
® 0.5<z<0.8
Spetroscopic and photo-z data of clusters and groups
Morphologies determined using HST images, visual classification
Stellar masses determined using the relation between Lg and B-V color
(Bell & De Jong 2001), Kroupa (2001) IMF adopted
Mass limited sample, limit: log(M/Mgun)>10.2
Local density computed from the circular area containing the 10 nearest
projected neighbors, for members with My<=-20
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The MF in ditferent
global environments
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(e.g. Fontana+ 2006, Bundy+ 2006, Franceschini+ 2006, Borch+ 2006, Vergani+ 2008, Pozzetti+ 2009,

Bolzonella+ 2010)

For high mass galaxies, the
evolution of the total mass function
BN z = 1 to z = 0 is relatively
modest

Low mass galaxies evolve more

then high mass galaxies
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(e.g. Fontana+ 2006, Bundy+ 2006, Franceschini+ 2006, Borch+ 2006, Vergani+ 2008, Pozzetti+ 2009,
Bolzonella+ 2010)
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Several studies have analyzed separately galaxies of
different types (according to colors, star formation
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‘ @ intermediate redshift

0.3<z<0.45

xlCGS clusler reqnons (178. 339)
#ICBS fiela (241, 580)

CLUSTERS, GROUPS and
R ; FIELD have the same MF

0.4<2<0.8 l
) xED-sCS cluster req ons (1268]

—%—A
@ EDsCS groups (620)
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[ cluster regions — field 45.6%
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The MF does not depend on global
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" The red/blue ME

(U - B) Vega =

> 1.10+40.075 x log(

Mx1.12

101°M,

)—0.18 x z—0.88

Peng+ (2010)
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Mx112

Peng+ (2010)

red

blue

%abx

%'v.

%U\b )

G

cluster regions
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" The red/b

Mx1.12
IOTOM@ )—0.18 xz—0.88 Peng-|- (2010)
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In all environments, red and blue galaxies have different MF
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" The red/blue ME

Mx112
(U — B)vega = 1.10+0.075 x log( T ) —0.18 x z—0.88 Peng+ (2010)

No differences are detected in MF in different environments, for red and
blue galaxies separately

' 0.4<z<0.8 ' ' 0.4<z<0.8 '
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the crossing mass is different!
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The evolution in clusters

galaxy merging
from z~0.6 to z~0 mass loss due to harassment

' oll environmental mass segregation of
infalling galaxies
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The evolution in clusters

galaxy merging
from z~0.6 to z~0 mass loss due to harassment
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of the total MF?




of the total MF?

® mergers
e harassment

e star formation

e morphological transformation
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What
of the total MF?

MASS GROWTH OF GALAXIES DUE TO
STAR FORMATION IN BOTH CLUSTER
GALAXIES AND IN GALAXIES INFALLING

FROM THE CLUSTER SURROUNDING
AREAS. THIS PROCESS IS ACCOMPANIED
ALSO BY THE MORPHOLOGICAL
TRANSFORMATION FROM ONE TYPE TO
THE OTHER.




he evolution |




[ — — =

=

from z~0.4 to z~0

1 R4

¥clusters WINGS: 0.04<2<0.07
x fielg ICBS: 0.3<2<0.45

®ciusters ICBS: 0.3<2<0.45

low 7: fielg ~ clusters 42 9%
high z: field - clusters 93.7%

l A . e A 1
" 1.5

Log,y M (M) |

The evolution of the MF with time is independent of environment
field at low-z from PM2GC (Calvi+ in preparation)




The MF in different
local environments







" The MF in different ID |

(e.g. Kauffmann+2004, Baldry+2006, Bundy+2006, Scoville+2007, Scodeggio+2009,
Bolzonella+2010 )
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The MEFE in different | |

(e.g. Kauffmann+2004, Baldry+2006, Bundy+2006, Scoville+2007, Scodeggio+2009,
Bolzonella+2010 )
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The MF in different LD |

(e.g. Kauffmann+2004, Baldry+2006, Bundy+2006, Scoville+2007, Scodeggio+2009,
Bolzonella+2010 )
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Both the mass functions and
the largest mass and the mean

mass are different

but in clusters and in the field
trends are different

cumulative numbers

Log,, M




HOW ARE RELATED
THE GLOBAL AND

THE LOCAL
ENVIRONMENT?¢
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Galaxy in clusters, groups and field follow the same mass distribution.|§
THE GALAXY STELLAR MASS FUNCTION DOES NOT VARY WITH THE
GLOBAL ENVIRONMENT AT z=0.3-0.8. |

In all environments, red and blue galaxies are regulated by different MF.|§
Comparing the MF in different environments separately for blue and red
galaxies, no differences are detected, but the crossing mass is different.

In clusters, both the total galaxy stellar mass function and that of each
morphological type evolve with z. There are proportionally more
massive galaxies at high- than at low-z.

Comparing the cluster and field MF at high a low z, we find that they
evolve in the same way. THE EVOLUTION OF THE MF WITH z IS
INDEPENDENT ON ENVIRONMENT

At all redshifts and in all environments local density plays an important
role in shaping the mass function




Galaxy in clusters, groups and field follow the same mass distribution. |
THE GALAXY STELLAR MASS FUNCTION DOES NOT VARY WITH THE|§
GLOBAL ENVIRONMENT AT z=0.3-0.8. |

In all environments, red and blue galaxies are regulated by different MF.|§
Comparing the MF in different environments separately for blue and red
galaxies, no differences are detected, but the crossing mass is different. |

In clusters, both the total galaxy stellar mass function and that of each
morphological type evolve with z. There are proportionally more
massive galaxies at high- than at low-z.

Comparing the cluster and field MF at high a low z, we find that they
evolve in the same way. THE EVOLUTION OF THE MF WITH z IS
INDEPENDENT ON ENVIRONMENT

e [ At all redshifts and in all environments local density plays an important|
role in shaping the mass function

GALAXY PROPERTIES ARE NOT MUCH DEPENDENT OF HALO MASS BUTE

DO DEPEND ON LOCAL SCALE PROCESSES




SFR-Mass relation

In different
environments







' FIELD: strong correlation between SFR and mass. It shifts to higher
' SFRs at higher z (e.g. Noeske+2007a, Elbaz+2007, Daddi+2007)




FIELD: strong correlation between SFR and mass. It shifts to higher
SFRs at higher z (e.g. Noeske+2007a, Elbaz+2007, Daddi+2007)

CLUSTERS: ¢ GROUPS: ¢

EDisCS

Spectroscopic data, mass limited sample, limit: log(M/Msun)>10.8 for
‘Salpeter (1955) IMF

'SFR for 24pm detected: from IR luminosity (Finn+2009) using

Kennicutt (1998)
from [Oll] luminosity (Poggianti+2008)

| SFRtot=SFRix+SFR[OII]
'SER for galaxies without 24pm detection: from [OIl] luminosity
‘(Poggianti+2008) dust- correctec
‘Galaxies without 24um detection are divided into red and blue:
| U-B> -0.032(MB+21.52)+0.454-0.25

;AGN contamination?
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24 um + blue
emission lines

Delta <SFR>=1.93 +/- 0.02

24 pm + blue and

. . PDeltad=SER =715 =10.02
red emission lines







The relation between SF activity and galaxy mass depends on
environment

There are significant differences between the SF activity of star-forming
galaxies of the same mass in different environments.

Clusters show a lower SF activity than the field, not only because they
have a pre-existing large population of early-type galaxies passively
evolving since high z, but because currently star-forming galaxies host
an average lower SFR than their field counterparts of similar mass

Environmental effects suppress SF in clusters. Fast-acting mechanisms
would leave the SFR-mass relation unchanged, while processes with a
longer timescale would affect it.
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