Transiet Relatvisitc Explosions Tsvi Piran The Hebrew University, Jerusalem Omer Bromberg, Franck Genet, Julian Krolik, Eli Livne, Ehud Nakar, Martin Obergaulinger, Stephan Rosswog, Re'em Sari

Bologna 2013

A Tale of Three Explosions

The origin of Gamma Ray Bursts

Radio Flares from Neutron star mergers

A Tale of Three Explosions

The origin of Gamma Ray Bursts

Radio Flares from Neutron star mergers

Tidal Disruption Events

A Tale of Three Explosions

The origin of Gamma Ray Bursts

Radio Flares from Neutron star mergers

Tidal Disruption Events

The energy released during a burst (~10⁵¹ erg within a few seconds) is only a few orders of magnitude below the energy released by the rest of the Universe at the same time!

The energy released during a burst (~10⁵¹ erg within a few seconds) is only a few orders of magnitude below the energy released by the rest of the Universe at the same time!

GRBs are the (electromagnetically) brightest objects in the Universe. Only ~8 orders of magnitude less then the theoretically maximal * luminosity $(c^{5}/G)^{-10^{59}}$ erg/sec .

* Up to relativistic corrections.

The Vela Satellites

GRBs were discovered accidentally at the late 60ies by the Vela satellites, defense sattelites built to monitor the outer space treaty that forbade nuclear explosions in space. At that time - the late sixties - it was considered "impolite" to launch a spy sattelite.

An invited prediction ?

Prompt gamma rays and X rays from supernovae

Stirling A. Colgate

Canadian Journal of Physics, 1968, 46:(10) S476-S480, 10.1139/p68-274

Energy release

Shock accelerates in steep density gradient

Shock breakout "first light"

• Duration 0.01–1000s

Duration 0.01–1000s
 Two populations (long and short)

Duration 0.01–1000s
 Two populations (long and short)

- Duration 0.01–1000s
 Two populations (long and short)
- 1 burst in 2×10⁷ years/galaxy
- ★ 3 ×10⁵ years/galaxy with beaming

- Duration 0.01–1000s
 Two populations (long and short)
- 1 burst in 2×10⁷ years/galaxy
- ★ 3 ×10⁵ years/galaxy with beaming

~10keV - 10 MeV
 (non thermal spectrum)
 (very high energy tail,
 up to GeV)

Figure 9 The spectrum of GB 910601 observed over a wide energy range, as measured by three experiments on CGRO (Share et al 1994). A typical broad spectrum with a peak power at about 600 keV is seen. (The fitted spectral up turn above 4 MeV is not significant.)

Duration 0.01–1000s
 Two populations (long and short)

- 1 burst in 2×10⁷ years/galaxy
- ★ 3 ×10⁵ years/galaxy with beaming
- ~10keV 10 MeV

 (non thermal spectrum)
 (very high energy tail,
 up to GeV)
- Rapid variability
 (less than 10ms)

- Duration 0.01–1000s
 Two populations (long and short)
- 1 burst in 2×10⁷ years/galaxy
- ★ 3 ×10⁵ years/galaxy with beaming
- ~10keV 10 MeV

 (non thermal spectrum)
 (very high energy tail,
 up to GeV)
- Rapid variability
 (less than 10ms)
- Typical energy ~10⁵¹ ergs

- Duration 0.01–1000s
 Two populations (long and short)
- 1 burst in 2×10⁷ years/galaxy
- ★ 3 ×10⁵ years/galaxy with beaming
- ~10keV 10 MeV

 (non thermal spectrum)
 (very high energy tail,
 up to GeV)
- Rapid variability
 (less than 10ms)
- Typical energy ~10⁵¹ ergs

- Duration 0.01–1000s
 Two populations (long and st
- 1 burst in 2×10⁷ years/galax
- 3 ×10⁵ years/galaxy with beaming
- ~10keV 10 MeV
 (non thermal spectrum)
 (very high energy tail,
 up to GeV)
- Rapid variability
 (less than 10ms)
- Typical energy ~10⁵² ergs
- Followed by multiwavelength
 Afteglow

Figure 9 The spectrum of GB 910601 observed over a wide energy range, as measured by three experiments on CGRO (Share et al 1994). A typical broad spectrum with a peak power at about 600 keV is seen. (The fitted spectral up turn above 4 MeV is not significant.)

What makes a GRB?

Energy, Energy, Energy + Time

Ø 0.01-100 sec + E ≈ 10⁵¹-10⁵² ergs
 ⇒ a newborn stellar mass compact object.
 ⇒ Collapsing stars or mergers of two compact objects

Observational indications
Long GRBs arise in

970228	970508	970828	971214	980326	980329	980519
	+		•	1. 1 .		
980613	980703	981226	990123	990506	990510	990705
			+		+	
990712	991208	991216	000131	000301c	000418	000926
*		4		1 +	: •	A sector
010222	010921	011030	011121	011211	020127	020305
				4		+
020322	020331	020405	020410	020427	020813	020903
	*+'				* #	
021004	021211	030115	030323	030329	040924	041006
+	+				1	

Observational indications

- 971214 • Long GRBs arise in star forming regions (Paczynski 990123 1997)
- Association with Sne (Ibc) Galama et al. 1998

0

980326

990506

980329

990510

980519

990705

Supernova 1998bw-GRB980425

E_p≈ 67 ± 40 keV Eγ≈ 7 10⁴⁷ erg z=0.085

Supernova 1998bw-GRB980425

E_p≈ 67 ± 40 keV E_γ≈ 7 10⁴⁷ erg z=0.085

The Smoking Gun

GRB030329-SN 2003dh – a regular GRB with a 98bw like supernova.

The Smoking Gun

GRB030329-SN 2003dh - a regular GRB with a 98bw like supernova.

The Smoking Gun

GRB030329-SN 2003dh - a regular GRB with a 98bw like supernova.

• Recently also GRB101219B - SN 2010ma

Two Types of GRBs

The Collapsar Model (MacFadyen & Woosley 1998)

The Collapsar Model (MacFadyen & Woosley 1998)

The Jet drills a hole in the star Model

Jet Simulations (Obergaulinger, Piran + 12)

Opening angle of 15° degrees at 2000 km into a star of 15 solar masses and solar metallicity. Constant energy injection rate, 5 * 10⁵⁰erg /s, through the entire run of the model. Lorentz factor at injection 7
Jet Simulations (Obergaulinger, Piran + 12)

Opening angle of 15° degrees at 2000 km into a star of 15 solar masses and solar metallicity. Constant energy injection rate, 5 * 10⁵⁰erg /s, through the entire run of the model. Lorentz factor at injection 7

Another explosion - Disruption of the Stellar envelope by the jet -Genet, Livne, Obergaulinger & TP 2011

About one solar mass is ejected non spherically

Bromberg Nakar, TP, Sari 11 ApJ 2011

The jet dissipates its energy while propagating.
The jet is slowed down to about 0.1c

Comparison with simulations

Zhang et al., 04

Comparison with simulations

Zhang et al., 04

Jet breakout time (Bromberg Nakar, TP, Sari 11 ApJ 2011)

 $t_b \simeq 15 \sec \left(\frac{L_{iso}}{10^{51} \text{ erg/sec}}\right)^{-1/3} \left(\frac{\theta}{10^\circ}\right)^{2/3} \left(\frac{R_*}{5R_\odot}\right)^{2/3} \left(\frac{M_*}{15M_\odot}\right)^{1/3}$

Jet breakout time (Bromberg Nakar, TP, Sari 11 ApJ 2011)

$$t_b \simeq 15 \sec \left(\frac{L_{iso}}{10^{51} \text{ erg/sec}}\right)^{-1/3} \left(\frac{\theta}{10^{\circ}}\right)^{2/3} \left(\frac{R_*}{5R_{\odot}}\right)^{2/3} \left(\frac{M_*}{15M_{\odot}}\right)^{1/3}$$

The engine must be active until the jet's head breaks out!*

Jet Simulations – A Failed Jet (Obergaulinger, Piran + 11)

Opening angle of 15° degrees at 2000 km into a star of 15 solar masses and solar metallicity. Constant energy injection rate, 5*10⁵⁰erg/s, for 2 seconds.

$T_{engine} = T_{B} + T_{90}$

98bw

Low luminosity GRBs – *ll*GRBs Don't arise from Collapsars

Thursday, January 31, 13

Low Luminosity GRBs - UGRBs Bromberg Nakar, TP, 11 ApJL 2011

- Low luminosity GRBs:
 - E_{iso}~10⁴⁸-10⁴⁹ ergs
 - Smooth single peaked light curve.
 - Soft Emission (E_{peak} <150 keV)
 - Much more numerous than regular long GRBs!
 - UGRBs dont have enoug power to penetrate the star

What makes a *ll*GRBs?

What makes a *ll*GRBs?

A weak jet that fails to break out ("a failed GRB").

What makes a *ll*GRBs?

A weak jet that fails to break out ("a failed GRB").

We observe the shock breakout form the stellar envelope (Colgate, 1967; Katz, Budnik, Waxman, 2010; Nakar & Sari, 2011)

Almost ALL GRBS accompanied by SNe are *ll*GRBs Å

A prediction of the Collapsar model

A prediction of the Collapsar model

 T_{90}

A prediction of the Collapsar model

A second look

A second look

A direct observational proof of the Collapsar model.

Short (Non-Collapsars) GRBs

Short (Non-Collapsars) GRBs

Thursday, January 31, 13

A large number of "failed or Choked" jets – a "failed GRB" 🗸

The rate of *ll*GRBs is very large

SGRB Fraction

Bromberg et al, 2013

Summary

GRBs don't follow the SFR

- Low luminosity GRBs are a different subgroup that forms with a different (third) physical mechanism.
- The rate of low luminosity GRBs is much higher than the rate of regular long or short GRBs
- The observed temporal distribution provides a first direct proof of the Collapsar model.

Many short GRBs observed by Swift are wrongly classified as "short" – this has implications to both the rate of NS mergers and to the properties of these GRBs. **Short (non collapsar) GRBs** Swift/XRT position intersects a bright elliptical at z = 0.226 (but also contains >10 higher redshift galaxies); No optical/radio afterglow

Neutron star mergers as progenitors of short GRBs (Eichler Livio, Piran, Schramm, 1988, Narayan, Paczynski & Piran 1992)

Magnetic field jet arising from NS merger Rezolla et al., 2011

R process material

R process material

Price & Rosswog

Confirmation only with detection of Gravitational radiation

Short GRBs-NS Mergers ?

To be confirmation with detection of Gravitational radiation

II. Radio Flares from Neutron Star merges - The Electromagnetic signals that follow the Gravitational Waves Nakar + TP, Nature 2011, TP, Nakar, & Rosswog MNRASm 2013a,b

Why EM signal?

Improves detectability (Kochaneck & Piran 1993)
Essential for localization
Much more physics

GRBs are beamed -> dificult to catch the GRB

Orpha afterglow will be too weak

Macronova Paczynski & Li 1997

Numerous numerical simulations show that NS merger eject 0.1 $M_{\rm o}$

Radio Flares Nakar & Piran 2011

Interaction of the sub or mildly relativistic outflow with the ISM produces a long lived radio flare

Supernova -> SNR macronova -> Radio Flare

Radio Supernova e.g. 1998bw (Chevalier 98)

 $e_e = \varepsilon_e e$ $e_B = B^2 / 8\pi = \varepsilon_B e$ $N(x) \propto x^{-p}$ for $x > x_{m}$ p=2.5 - 3 $\boldsymbol{\chi}_{m} = (m_p/m_e)e_e (\Gamma - 1)$ $v = (3/4\pi) eB \lambda^2$ $F_{v}=(\sigma_{T}c/e)N_{e}B$

Frequency and Intensity (Nakar & TP Nature, 2011)

$$\nu_{m,dec} \equiv \nu_m(t_{dec}) \approx 1 \text{ GHz } n^{1/2} \epsilon_{B,-1}^{1/2} \epsilon_{e,-1}^2 (\Gamma_0 - 1)^{5/2},$$

$$F_{v_{\text{obs}},\text{peak}}[v_{\text{obs}} > v_{\text{m,dec}}, v_{\text{a,dec}}] \approx 0.3E_{49}n_0^{\frac{p+1}{4}} \varepsilon_{\text{B},-1}^{\frac{p+1}{4}} \varepsilon_{\text{e},-1}^{p-1} \beta_{\text{i}}^{\frac{5p-7}{2}} d_{27}^{-2} \left(\frac{v_{\text{obs}}}{1.4}\right)^{-\frac{p-1}{2}}$$

Rosswog, TP, Nakar 13, TP, Nakar, Rosswog 13

Radio Flares and Macronova

 $N_{all-sky}(1.4 {\rm GHz}) \approx 20 E_{49}^{11/6} n^{\frac{9p-1}{24}} \epsilon_{B,-1}^{\frac{3(p+1)}{8}} \epsilon_{e,-1}^{\frac{3(p-1)}{2}} (\Gamma_0 - 1)^{\frac{45p-83}{24}} \mathcal{R}_{300} F_{lim,-1}^{-3/2} \; .$

 $N_{all-sky}(1.4 \text{GHz}) \approx 20 E_{49}^{11/6} n^{\frac{9p-1}{24}} \epsilon_{B,-1}^{\frac{3(p+1)}{8}} \epsilon_{e,-1}^{\frac{3(p-1)}{2}} (\Gamma_0 - 1)^{\frac{45p-83}{24}} \mathcal{R}_{300} F_{lim,-1}^{-3/2} .$

 $N_{all-sky}(1.4 {\rm GHz}) \approx 20 E_{49}^{11/6} n^{\frac{9p-1}{24}} \epsilon_{B,-1}^{\frac{3(p+1)}{8}} \epsilon_{e,-1}^{\frac{3(p-1)}{2}} (\Gamma_0 - 1)^{\frac{45p-83}{24}} \mathcal{R}_{300} F_{lim,-1}^{-3/2} \; .$

Detectability

Table 1 | Observing radio flares

Radio facility	Observing	Field of	One-hour	One-hour detection horizon†	
	frequency (GH2)	view (deg.)	(وريس r.m.s.*	$\beta_1 \approx 1, \\ E_{49} = 1, n_0 = 1$	$\beta_i \approx 1,$ $E_{49} = 10, n_0 = 1$
EVLA	1.4	0.25	7	1 Gpc	3.3 Gpc
ASKAP	1.4	30	30	500 Mpc	1.6 Gpc
MeerKAT	1.4	1.5	35	500 Mpc	1.6 Gpc
Apertif	1.4	8	50	400 Mpc	1.25 Gpc
LOFAR	0.15	20	1,000	35 Mpc	90 Mpc

		Ten-hour detection horizo	
	$\beta_i = 0.2, B$ $n_0 = 1, \mu$	$E_{49} = 10,$ $\beta_i \approx 1, E_{49} = 1,$ $p = 2.5$ $n_0 = 10^{-3}, p = 2$	
	370 180 165 140 701	Mpc 140 Mpc Mpc 70 Mpc Mpc 65 Mpc Mpc 50 Mpc Mpc 20 Mpc	

The Bower Transient 19870422 19870422

5GHz 0.5mJy (<0.036 mJy) tnext =96 days 1.5" from the centroid of MAPS-P023-0189163 a blue Sc galaxy at z=0.249 (1050Mpc) with current star formation

Summary

Search for long lived Radio Flares may discover the rate of Neutron star mergers with implications to short GRBs and the detection of Gravitational Radiation

III. TIdal Disruption Events – Swift J1644 (GRB110328) and J2058 TP + Julian Krolik (ApJ. 11,12)

Thursday, January 31, 13

Why X-rays?

Ligth Curve

Swift light curve on a linear scale

The Third Flare

Light curve from 1.1×10^5 to 1.13×10^5 sec

Temporal features:

- Strong variability on 100 sec time scale
- Flares last about 1000-2000 sec
- Minima between the flares is a factor of 600 below the maxima
- 3x10⁴ sec between flares
- 2x10⁵ sec duration before onset of a gradual decay

A tidal disruption of a main sequence star

The minimal relevant time scale: $P_{orb}(R_T) \approx 1/\sqrt{(G \rho)} \approx 10^4 \text{ sec}$ Impossible to get 200 sec variability

A Disruption of a White Dwarf by a 5.10⁵ M_☉ black hole

$P_{orb}(R_T) \approx 1/\sqrt{(G \rho)} \approx 6 \text{ sec}$

For a White Dwarf $P_{orb}(R_T) \approx 1/\sqrt{(G \rho)} \approx 6$ sec

 100 sec rise time - onset of accretion
 1000 sec flare duration - the "drainage" time of a small accretion disk forms in a partial disruption event.

5x10⁴ sec between flares - orbital time
 Precurse three days before the event is the "first" tidal passage

5x10⁴ secorbital period of WD remnant

200 sec rise time – a few RT orbits

2x10⁵ sec – onset of t^{-5/3} decay

Why Jet?

- Blandford Znajek Jet power is deterimined by Magnetic field (B) on the horizon and the BH's area.
- B is determined by P (Pressure around ISCO)
- P depends on accretion mode super or sub Eddington which depends on on BH mass M_{BH} accretion rate M $\propto (M*/M_{BH})^{1/2}$
- Thermal (UV) emission also depends on accretion mode.
Sub-Eddington

P is independent of M

radiation dominate

Super-Eddington

Jet (non thermal) vs Disk (thermal UV) Luminsoity

Light curves

$t_0 \simeq 1 \times 10^7 (\mathcal{M}_* M_{BH,6})^{1/2} \text{ s},$

The x-ray light curve of Swift J2508

The x-ray light curve of Swift J2508

Can we apply a similar reasoning to Neutrino **Dominated Accretion** Disks in GRBs? Kawanaka, TP & Krilok 2012

Summary

- There is a third population of GRBs low luminosity GRBs – llGRBs – that arise from a different physica mechanism
- The observed plateau in the duration distribution of LGRBs show that LGRBs arise from Collapsars!
- A large fraction (~1/3) of Swift short GRBs are Collapsars (only those with less than 0.7 sec are clearly Non-Collapsars).
- Strong Radio Flares shold follow Neutron Star mergers
- Swift J1644 was a disruption of a WD
- Super Edd -> Jets -> x-rays in TDEs

Summary

- There is a third population of GRBs low luminosity GRBs – llGRBs – that arise from a different physica mechanism
- The observed plateau in the duration distribution of LGRBs show that LGRBs arise from Collapsars!
- A large fraction (~1/3) of Swift short GRBs are Collapsars (only those with less than 0.7 sec are clearly Non-Collapsars).
- Strong Radio Flares shold follow Neutron Star mergers
- Swift J1644 was a disruption of a WD
- Super Edd -> Jets -> x-rays in TDEs

