Observational Clues of Stars at High Redshifts

Elizabeth Fernandez

with Ilian Iliev, Saleem Zaroubi, Eiichiro Komatsu, Garrelt Mellema, Paul Shapiro, & Vibor Jelic

university of groningen

faculty of mathematics and natural sciences

/ astronomy

Four Fundamental Topics

The First Generations of Stars Development of Structure Formation Metal Enrichment Reionization

The First Generations of Stars

- First generations of stars could have been fundamentally different than stars we observe at lower redshifts
- No metallicity Population III stars
- ${\small \circledcirc}$ Could be massive (10s to 100s $M_{\odot})$

Stacy et al 2010

university of groningen

faculty of mathematics and natural sciences

🖊 astronomy

Metal Enrichment

- Population III stars eventually die and enrich the IGM
 - How many metals are released?
 - Dependent on stellar mass black hole, supernova, other remnant
 - Mixing
- Critical metallicity reached & Population II stars form

Development of Structure Formation

- When do stars start forming into galaxies?
- What are the masses of the galaxies formed?
- What is the mass of galaxies doing the ionizing?
- Output How they are these galaxies clustered in space?

groningen

Reionization

- We know that the universe was reionized early
 - \odot If it was instantaneous, equivalent to $z \sim 11$
- Were stars responsible?
- Output Standing reionization gives us information on:
 - Structures at high redshift
 - How many ionizing photons are being produced

university of

groningen

- How easily these photons enter the IGM ===> Escape Fraction
- Shape and size of HII bubbles

High redshift gamma ray bursts

Cumulative Light in the Infrared

Emission from High Redshifts

Mapping the Near Infrared Background Emission at High Redshift

the theory

Emission from Galaxies

Emission from Galaxies

Redshifted to 1-4 microns

The infrared sky *must* hold clues

university of groningen

The Near Infrared Background

the predictions

The First Generations of Stars

Development of Structure Formation

Metal Enrichment of the Universe

 $I_{\nu} = \frac{c}{4\pi} \int dz \, \frac{p((1+z)\nu, z)}{H(z)(1+z)}$

 $p(\nu,z) = \dot{\rho}_*(z)c^2 \sum \langle \epsilon^{\alpha}_{\nu} \rangle$

Reionizaton

 $\left\langle \epsilon_{\nu}^{\alpha} \right\rangle \equiv \frac{1}{m_{*}} \int dm \, m f(m) \left| \frac{\overline{L}_{\nu}^{\alpha}(m) \tau(m)}{mc^{2}} \right|$

university of fac groningen an

faculty of mathematics and natural sciences 🖌 astronomy

Mass of the first stars

The First Generations of Stars

Development of Structure Formation

Metal Enrichment of the Universe

 $I_{\nu} = \frac{c}{4\pi} \int dz \, \frac{p((1+z)\nu, z)}{H(z)(1+z)}$

 $p(\nu,z) = \dot{\rho}_*(z)c^2 \sum \langle \epsilon^{\alpha}_{\nu} \rangle$

Reionizaton

 $\left\langle \epsilon_{\nu}^{\alpha} \right\rangle \equiv \frac{1}{m_{*}} \int dm \, m f(m) \left| \frac{\overline{L}_{\nu}^{\alpha}(m) \tau(m)}{mc^{2}} \right|$ university of groningen faculty of mathematics astronomy and natural sciences

Luminosity, Age – depend on the mass and metallicity of the stars

The First Generations of Stars

Development of Structure Formation

Metal Enrichment of the Universe

$$I_{\nu} = \frac{c}{4\pi} \int dz \, \frac{p((1+z)\nu, z)}{H(z)(1+z)}$$

$$p(
u,z)=\dot{
ho}_*(z)c^2\sum_lphaig\langle\epsilon^lpha_
uig
angle$$

Reionizaton

$$\left\langle \epsilon_{\nu}^{\alpha} \right\rangle \equiv \frac{1}{m_{*}} \int dm \, m f(m) \left[\frac{\overline{L}_{\nu}^{\alpha}(m) \tau(m)}{mc^{2}} \right]$$

university of faculty groningen and na

faculty of mathematics and natural sciences

🖊 astronomy

Star formation efficiency – star formation rate

The First Generations of Stars

Development of Structure Formation

Metal Enrichment of the Universe $I_{\nu} = \frac{c}{4\pi} \int dz \, \frac{p((1+z)\nu, z)}{H(z)(1+z)}$

$$p(\nu,z) = \dot{
ho}_*(z)c^2 \sum_{lpha} \langle \epsilon^{lpha}_{
u}
angle$$

Reionizaton

 $\left\langle \epsilon_{\nu}^{\alpha} \right\rangle \equiv \frac{1}{m_{*}} \int dm \, mf(m) \left| \frac{\overline{L}_{\nu}^{\alpha}(m)\tau(m)}{mc^{2}} \right|$

university of faculty of mathematics groningen and natural sciences

// astronomy

The Observable NIRB

The Star Formation Efficiency

Amplitude depends directly on f_*

What happens when we transfer from

Mass of Population III Stars

Why Study Fluctuations?

- Information about first structures galaxies, HII regions
- Information on primordial density field
- Second Second

university of faculty of mathematics groningen and natural sciences

Structure Formation through Simulations

- N-body code with radiative transfer (Ilian et al 2006, 2007, 2011, 2013)
 - \odot M_{min} = 2x10⁹ or 10⁸ M_{sun}
 - Various box sizes: (425/h Mpc)³, (114/h Mpc)³, (37/h Mpc)³
- Various suppression histories
- Combine with predicted galaxy luminosities

university of groningen

Structure Formation through Simulations

- \odot M_{min} = 2x10⁹ or 10⁸ M_{sun}
- Various box sizes: (425/h Mpc)³, (114/h Mpc)³, (37/h Mpc)³

university of

groningen

- Various suppression histories
- Combine with predicted galaxy luminosities

Making Predictions

- Same a stellar population
 - Metallicity
 - Pop III
 - Pop II
 - Mass
 - \odot Heavy (Larson mass spectrum, ~ 200 $M_{\odot})$

university of groningen

- Normal IMF (Salpeter)
- Escape fraction
- Star formation efficiency

 $f_{\gamma} = f_* f_{\rm esc} N_i$

% baryons in stars

Number of ionizing photons produced

$$C_l = \frac{c}{(4\pi)^2} \left(f_* \frac{\Omega_b}{\Omega_m} \right)^2 \int \frac{dz}{H(z)r^2(z)(1+z)^4} \\ \times \left[\bar{\rho}_M^{halo}(z) \left\{ \bar{l}^*(z) + (1-f_{\rm esc})\bar{L}(z) \right\} \right]^2 \\ \times b_{eff}^2 \left(k = \frac{l}{r(z)}, z \right) P_{\rm lin} \left(k = \frac{l}{r(z)}, z \right)$$

The First Generations of Stars

Development of Structure Formation

- Metal Enrichment of the Universe
 - Reionizaton

$$C_l = \frac{c}{(4\pi)^2} \left(f_* \frac{\Omega_b}{\Omega_m} \right)^2 \int \frac{dz}{H(z)r^2(z)(1+z)^4} \\ \times \left[\bar{\rho}_M^{halo}(z) \left\{ \bar{l}^*(z) + (1-f_{\rm esc})\bar{L}(z) \right\} \right]^2 \\ \times b_{eff}^2 \left(k = \frac{l}{r(z)}, z \right) P_{\rm lin} \left(k = \frac{l}{r(z)}, z \right)$$

university of faculty of mathematics groningen and natural sciences

The First Generations of Stars

Development of Structure Formation

Metal Enrichment of the Universe

Reionizaton

Luminosity – depends on the mass and metallicity of the stars $C_{l} = \frac{c}{(4\pi)^{2}} \left(f_{*} \frac{\Omega_{b}}{\Omega_{m}} \right)^{2} \int \frac{dz}{H(z)r^{2}(z)(1+z)^{4}} \\ \times \left[\bar{\rho}_{M}^{halo}(z) \left\{ \bar{l}^{*}(z) + (1-f_{esc})\bar{L}(z) \right\} \right]^{2} \\ \times b_{eff}^{2} \left(k = \frac{l}{r(z)}, z \right) P_{lin} \left(k = \frac{l}{r(z)}, z \right)$

university of faculty and nat

Linear Power Spectrum

The First Generations of Stars

Development of
 Structure Formation
 A
 Structure Formation

Metal Enrichment of the Universe

Reionizaton

Bias – depends on structure formation – how biased halos are $C_{l} = \frac{c}{(4\pi)^{2}} \left(f_{*} \frac{\Omega_{b}}{\Omega_{m}} \right)^{2} \int \frac{dz}{H(z)r^{2}(z)(1+z)^{4}} \\ \times \left[\bar{\rho}_{M}^{halo}(z) \left\{ \bar{l}^{*}(z) + (1-f_{esc})\bar{L}(z) \right\} \right]^{2} \\ \times b_{eff}^{2} \left(k = \frac{l}{r(z)}, z \right) P_{lin} \left(k = \frac{l}{r(z)}, z \right)$

university of facul groningen and r

The First Generations of Stars

Development of Structure Formation

- Metal Enrichment of the Universe
 - Reionizaton

 $\begin{aligned} & \operatorname{Star formation efficiency}_{\text{star formation rate}} \\ C_l = \frac{c}{(4\pi)^2} \left(f_* \frac{\Omega_b}{\Omega_m} \right)^2 \int \frac{dz}{H(z) r^2(z) (1+z)^4} \\ & \times \left[\bar{\rho}_M^{halo}(z) \left\{ \bar{l}^*(z) + (1-f_{\rm esc}) \bar{L}(z) \right\} \right]^2 \\ & \times b_{eff}^2 \left(k = \frac{l}{r(z)}, z \right) P_{\rm lin} \left(k = \frac{l}{r(z)}, z \right) \end{aligned}$

university of fa groningen

The First Generations of Stars

Development of Structure Formation

- Metal Enrichment of the Universe
 - Reionizaton

Escape fraction gives details on reionization $C_{l} = \frac{c}{(4\pi)^{2}} \left(f_{*} \frac{\Omega_{b}}{\Omega_{m}} \right)^{2} \int \frac{dz}{H(z)r^{2}(z)(1+z)^{4}} \\ \times \left[\bar{\rho}_{M}^{halo}(z) \left\{ \bar{l}^{*}(z) + (1-f_{esc}) \bar{L}(z) \right\} \right]^{2} \\ \times b_{eff}^{2} \left(k = \frac{l}{r(z)}, z \right) P_{\text{lin}} \left(k = \frac{l}{r(z)}, z \right)$

university of facul groningen and r

Galactic Properties

Massive Galaxies Only (> 10⁹ M₀)

- Mostly depends on bias
- Bias is strongly dependent on mass of halo and suppression history

Small & Large Galaxies $(> 10^8 \text{ M}_{\odot})$

Small Galaxies Suppressed

Curious About Reionization? Look to the IGM

- Number of ionizing photons produced consistent with reionization
- HII bubble size, shape

university of facul groningen and r

HII Bubbles

HII Bubbles

The Illusive IGM

The Illusive IGM

The Near Infrared Background

the observations

It's not that Easy to Observe...

Zodiacal Light

Our Galaxy

Foreground galaxies

First Light after the Universe's "Dark Ages" NASA / JPL-Caltech / A. Kashlinsky (GSFC)

Spitzer Space Telescope • IRAC ssc2006-22a

Fluctuations Measured by AKARI

- Observations are very difficult to make
- Mask out foreground sources
 - Bright pixels
 - Known galaxies
- Smooth images
 - Structures on ~ few hundred arcsec
 - Similar structure at all wavelengths

university of groningen

 faculty of mathematics and natural sciences

Matsumoto et al 2011

astronomy

Intrahalo Stars

Another Possibility – Direct Collapse Black Holes

Improving Observations

AKARI

- I3 bands, 2-160 microns
- OIBER (Cosmic Infrared Background Experiment)
 - Rocket borne
 - ◎ 7" to 2 degrees
 - Two wide field imagers, 0.8 an 1.6 microns

university of groningen

Fluctuations of the NIRB

- Fluctuations are a promising method to observe high redshift stars
- Shape of spectra can give information on structures and mass of halos
- Very hard to get information on:
 - Metallicity and mass of stars
 - Star formation time scale
 - Any information about the IGM

But all is not lost!

Other observables to break degeneracyThere's still hope for the IGM...

university of

groningen

The 21cm Background

a closer look at the IGM

A Quick Intro to the 21 cm Line

- Results from the transition
 between hyperfine energy
 levels in neutral H
- Maps where star formation is not occurring
- Good for pre-reionization
- Line emission = direct redshift information

university of groningen

LOFAR

 Epoch of Reionization team

 identify 21 cm
 line

• And map reionization!

Cross Correlating for More Information

Cross-correlations

Region dependent

- -> Ionization ◎ 21 cm -> IGM
- IRB -> Galaxies -> Stars doing the ionizing
- The 21 cm line gives redshift information
 - This is not given by the NIRB measurements

groningen

The NIRB and the 21cm line are fundamentally linked

university of faculty of mathematics and natural sciences

In General...

- Regions that are neutral don't have many galaxies to ionize them
- Areas that are bright in the 21cm will be dim in the infrared

university of groningen

...therefore

 Emission in the infrared and emission in the 21 cm background should be anti-correlated

university of groningen

Raw NIRB map

Perform Gaussian Smoothing

Fernandez et al 2013

Fernandez et al 2013

Fernandez et al 2013

The 21 cm background and the NIRB https://www.youtube.com/watch? v=mbzHn5aMpz4

Learning about the First Generations of Stars Using Observations + Theory

- Properties of Early Stars
 - Star formation rate reflected in amplitude of NIRB.
 - Mass may be reflected in the shape of the spectra of the NIRB
- Development of Structure Formation seen in shape of NIRB angular power spectrum
 - Can observe masses of galaxies that are emitting

university of

groningen

- Can infer suppression history
- Anti-correlated with 21cm emission
- Metal Enrichment be reflected in the shape of the spectra of the NIRB
- Reionization Cross correlation between NIRB and 21cm background

