OAB - Univ. Bologna - Jan 2014

Measuring σ_{8} with

 Weak Lensing of SNe

 Weak Lensing of SNe}In collaboration with:
Luca Amendola, Tiago de Castro, Kimmo Kainulainen \mathcal{E} Valerio Marra

Miguel Quartin

Instituto de Física
Univ. Federal do Rio de Janeiro

The Hubble's Law

- Lemaître (and later Hubble)* found out that galaxies are, in average, receding from us;
- The redshift z is linear with distance
- The velocity is approx. also linear with distance
* Stigler's law of eponymy: "No scientific discovery is named after its original discoverer."

$$
z=\frac{H_{0}}{c} D
$$

$v=H_{0} D+\mathcal{O}\left(\frac{v}{c}\right)^{2}$

Distances in Cosmology

- Inside the solar system \rightarrow Laser Ranging
- Shoot a strong laser at a planet and measure the time it takes to be reflected back to us
- Inside the galaxy \rightarrow stellar parallax
- Requires precise astrometry
- Maximum distance measured: 500 pc (1600 ly), by the Hipparcos satellite (1989-1993)
- Dec. $2013 \rightarrow$ Gaia satellite launched $(2013-2019) \rightarrow$ parallax up to $\sim 50 \mathrm{kpc}$
- Compare with:
- Milky Way $\rightarrow \sim 15$ kpc radius
- Andromeda $\rightarrow \sim 1 \mathrm{Mpc}$

Standard Candles

- A plot of distance vs. z is called a Hubble Diagram
- To measure distances at $z>\sim 0.0001$ ($\sim 0.4 \mathrm{Mpc}$) we need good standard candles (known intrinsic luminosity)
- There are 2 classic standard (rigorously, standardizible) candles in cosmology:
- Cepheid variable stars $(0<\mathbb{z}<0.05)$ * Jones et al., 1304.0768
- Type Ia Supernovae $\left(0<z<1.91^{*}\right)$
- Both classes have intrinsic variability, but there are empirical relations that allow us to calibrate and standardize them

Type Ia Supernovae

Type Ia Supernovae (3)

- Supernovae (SNe) are very bright explosions of stars
- There are 2 major kinds of SNe
- Core-collapse (massive stars which run out of H and He)
- Collapse by mass accretion in binary systems (type Ia)
- White dwarf + red giant companion (single degenerate)
- White dwarf + White dwarf (double degenerate)
- Type Ia SNe explosion \rightarrow ~ standard energy release
- Chandrasekar limit on white dwarf mass: $M_{\max }=1.44 \mathrm{M}_{\text {sun }}$
- Beyond this \rightarrow instability \rightarrow explosion
- SNe Ia \rightarrow less intrinsic scatter + strong correlation between brightness \& duration

Type Ia Supernovae (4)

- SNe Ia are so far the only proven standard(izible) candles for cosmology
- With good measurements \rightarrow scatter <0.15 mag in the Hubble diagram
- But arguably they are subject to more systematic effects than BAO (baryon acoustic oscillations) \& CMB
- Systematic errors already the dominant part $\left(\mathrm{N}_{\mathrm{SNe}} \sim 1000\right)$
- In the next ~ 10 years \rightarrow statistics will increase by $100 x$
- Huge effort to improve understanding of systematics

Howell, 1011.0441 (reviewv of SNe)

SNe Systematics

| Systematic | SNLS3 143 | CfA $^{27 /}$ /ESSENCE 44 | SDSS-II 266 | SCP $^{28}{ }^{28}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Best fit w (assuming flatness) | \ldots | -0.987 | -0.96 | -0.997 |
| Statistical error | \ldots | 0.067 | 0.06 | 0.052 |
| Total stat+systematic error | \ldots | 0.13 | 0.13 | 0.08 |
| Systematic error breakdown | | | | |
| Flux reference | 0.053 | 0.02 | 0.02 | 0.042 |
| Experiment zero points | 0.01 | 0.04 | 0.030 | 0.037 |
| Low-z photometry | 0.02 | 0.005 | \ldots | \ldots |
| Landolt bandpasses | 0.01 | \ldots | 0.008 | \ldots |
| Local flows | 0.014 | \ldots | 0.03 | \ldots |
| Experiment bandpasses | 0.01 | \ldots | 0.016 | \ldots |
| Malmquist bias model | 0.01 | 0.02 | \ldots | 0.026 |
| Dust/Color-luminosity (β) | 0.02 | 0.08 | 0.013 | 0.026 |
| SN la Evolution | \ldots | 0.02 | \ldots | \ldots |
| Restframe U band | \ldots | \ldots | 0.104 | 0.010 |
| Contamination | \ldots | \ldots | \ldots | 0.021 |
| Galactic Extinction | \ldots | \ldots | 0.022 | 0.012 |

Table 1: Best-fit values of $\langle w\rangle$ and error estimates. For the CfA3/ESSENCE colum

Supernova Lensing

- Standard SNe analysis \rightarrow geodesics in FLRW
- Real universe \rightarrow structure (filaments \& voids) \rightarrow weaklensing (WL) \rightarrow very skewed PDF (Probab. Distr. Function)!
- Most SNe \rightarrow demagnified a little (light-path in voids)
- A few \rightarrow magnified "a lot" (path near large structures)
- The lensing PDF is the key quantity
- Hard to measure \rightarrow need many more SNe
- Can be computed: ray-tracing in N-body simulations
- See: Takahashi et al. 1106.3823

Hilbert et al. astro-ph/0703803

- N-body \rightarrow too expensive to do likelihoods \rightarrow many parameter values (many $\Omega_{m 0}, \sigma_{8}, \mathrm{~W}_{\mathrm{DE}}$, etc.)

Supernova Lensing (2)

- Supernova light travels huge distances
- Lensing \rightarrow on arverage \rightarrow no magnification (photon \# conser.)
- Important quantity \rightarrow magnification PDF
- Zero mean; very skewed (most objects de-magnified)
- Adds non-gaussian dispersion to the Hubble diagram

$$
\begin{aligned}
& \bar{\mu} \equiv \text { magn }=\frac{1}{(1-\kappa)^{2}-\gamma^{2}} \simeq \frac{1}{(1-\kappa)^{2}} \\
& \kappa\left(z_{s}\right)=\int_{0}^{r_{s}} d r \rho_{M 0} G\left(r, r_{s}\right) \delta_{M}(r, t(r))
\end{aligned}
$$

Function of three $\mathrm{d}_{\mathrm{A}}(\mathrm{z})$

Supernova Lensing (3)

- Note that the N-body approach might not be appropriate
- Supernovae light bundles form a very thin (<1 AU) pencil
- N-body simulations coarse grained in scales >>>1 AU
- Relativistic effects (e.g. Ricci + Weyl focusing) might be important
Clarkson, Ellis, Faltenbacher, Maartens, Umeh, Uzan (1109.2484, MNRAS)
- There are also corrections due to a neglected Doppler term

Bolejko, Clarkson, Maartens, Bacon, Meures, Beynon (1209.3142, PRL)

- We neglect these corrections here

The Lensing PDF

Finite sources

A New Method

- We need something faster \rightarrow stochastic GL analysis (sGL)
- Populate the universe with NFW halos \rightarrow Halo Model
- need prescriptions for mass fun. \& concentration param.
- In a given direction, draw nearby distribution of halos
- Bin in distance \& impact parameter
- compute the convergence (fast)
K. Kainulainen \& V. Marra 0906.3871 (PRD) 0909.0822 (PRD)

A New Method (2)

NFW Profile

$$
\rho(r)=\frac{\rho_{0}}{\frac{r}{R_{s}}\left(1+\frac{r}{R_{s}}\right)^{2}}
$$

Supernova Lensing (4)

- sGL \rightarrow fast way to compute the κ PDF
- accurate when compared to N -body simulations
- many redshift bins; different cosmological parameters
- fast enough to be used on likelihood analysis
- Mathematica code available at www.turbogl.org
- We computed the KPDF for a broad parameter range
- PDF is well parametrized by the first 3 central moments

$$
\mu_{2}, \mu_{3}, \mu_{4}
$$

- Lensing depends mostly on $\Omega_{m 0} \& \sigma_{8}$
- Very weak dependence on: $\mathrm{w}, \mathrm{h}, \Omega_{\mathrm{k} 0}, \mathrm{n}_{\mathrm{s}}, \mathrm{w}, \ldots$ Marra, Quartin \& Amendola 1304.7689 (PRD)

Supernova Lensing (5)

- Likelihood for SNe analysis \rightarrow convolution of lensing PDF and intrinsic (standard) SNe PDF

Gaussian!

$L(\mu)=\int \mathrm{d} y P_{\mathrm{wl}}\left(y, \Omega_{m 0}, \sigma_{8}, \cdots\right) P_{S N}(\Delta m-\mu-y, \sigma)$

- It is useful to compute the first central moments of the PDF
- Mean (zero); variance; skewness \& kurtosis
- "Cumulants cumulate":
- Convolution variance = lensing var + intrinsic var
- Convolution skewness = lensing skew + "0"
- We computed the кPDF for many cosmological params.

The Lensing PDF (2)

The Lensing PDF (3)

Variance, Skewness \& Kurtosis

Fitting Functions

- We provide accurate and flexible analytical fits for the variance, skewness \& kurtosis
- Significant improvement upon current HL fit: $\sigma_{\text {lens }}^{\mathrm{HL}}=0.093 z$

$$
\begin{aligned}
0 & \leq z \leq 3 \\
0.35 & \leq \sigma_{8} \leq 1.25 \\
0.1 & \leq \Omega_{m 0} \leq 0.52
\end{aligned}
$$

Fitting Functions (2)

- We find that the variance is $\sim 2 x$ smaller than some previous estimates D. Holz \& E. Linder 0412173 (ApJ)
- But are in better agreement w/ SNLS Jonsson et al. 1002.1374 (MNRAS)
- Conclusion \rightarrow high-z supernovae are more useful than
sometimes thought
- Lensing bias less of a problem

Lensing bias

Exagerated effect

Amendola, Kainulainen, Marra \& Quartin (1002.1232, PRL) 28

The Inverse Lensing Problem

- Can we turn Noise into Signal?
- Can we learn about cosmology from the scatter of supernovae in the Hubble diagram?

Dodelson \mathcal{E} Vallinotto

- Answer: YES! We can constrain $\sigma_{8}!\quad$ (astro-ph/0511086)
- Caveat 1: no revolutionary precision
- need $\sim 10^{4}$ SNe to get to $\sim 10 \%, \sim 10^{6}$ to get to $\sim 1 \%$
- LSST will give us $\sim 10^{6}$
- Caveat 2: need to assume halo profiles: e.g. NFW
- It is a very good cross-check
- It is a new observable

- Precise parameter estimation in Λ CDM not enough
- Very important to cross-check observations
- Rule-out systematics
- Very important to cross-check theoretical assumptions
- e.g.: homogeneity, isotropy

What is σ_{8} ?

- σ_{8} is the amplitude of the matter fluctuations at the scale of $8 \mathrm{Mpc} / \mathrm{h}$

$$
\Delta^{2}(r, z) \equiv\left(\frac{\delta M}{M}\right)^{2}=\int_{0}^{\infty} \frac{d k}{k} \Delta^{2}(k, z) W^{2}(k r)
$$

$$
\Delta^{2}(k, z) \equiv \frac{k^{3}}{2 \pi^{2}} P(k, z)=\delta_{H 0}^{2}\left(\frac{c k}{a_{0} H_{0}}\right)^{3+n_{s}} T^{2}\left(k / a_{0}\right) D^{2}(z)
$$

$$
\Delta(r=8 \mathrm{Mpc} / h, z=0)=\sigma_{8}
$$

What is σ_{8} ? (2)

- σ_{8} measurements are usually done in either of 3 ways:
- CMB \rightarrow measure fluctuations at $\mathrm{z}=1090$ and propagate them to $\mathrm{z}=0$
- Cosmic Shear \rightarrow requires galaxy shapes
- Cluster abundance
- Some tension between these measurements
- Cross-check important! Planck XX (1303.5080)

The Inverse Lensing Problem (2)

- Information from lensing \leftrightarrow full, lensing-dependent likelihood:
$L(\mu)=\int \mathrm{d} y P_{\mathrm{wl}}\left(y, \Omega_{m 0}, \sigma_{8}, \cdots\right) P_{S N}(\Delta m-\mu-y, \sigma)$
- It works BUT there is a faster \& more interesting method: the Method of the Moments (MeMo)
- Instead of the full lensing PDF we just use the first 3 central moments
- Advantages: faster; directly related to observations \rightarrow simpler to control systematics step-by-step
- Disadrantage: more involved equations

The MeMo Likelihood

- Using the first 4 moments, we write:

$$
\begin{aligned}
& L_{\mathrm{MeMo}}\left(\Omega_{m 0}, \sigma_{8},\left\{\sigma_{\mathrm{int}, j}\right\}\right)=\exp \left(-\frac{1}{2} \sum_{j}^{\mathrm{bins}} \chi_{j}^{2}\right), \\
& \chi_{j}^{2}=\left(\mu-\mu_{\mathrm{fid}}\right)^{t} \Sigma_{j}^{-1}\left(\mu-\mu_{\mathrm{fid}}\right) \\
& \mu=\left\{\mu_{1}^{\prime}, \mu_{2}, \mu_{3}, \mu_{4}\right\}
\end{aligned}
$$

- Very complicated covariance matrix: if the PDFs were gaussian, it would be:

$$
\Sigma_{\mathrm{gau}, j}=\frac{1}{N_{j}}\left(\begin{array}{cccc}
\sigma_{j}^{2} & 0 & 0 & 0 \\
0 & 2 \sigma_{j}^{4} & 0 & 12 \sigma_{j}^{6} \\
0 & 0 & 6 \sigma_{j}^{6} & 0 \\
0 & 12 \sigma_{j}^{6} & 0 & 96 \sigma_{j}^{8}
\end{array}\right)
$$

Scary Movie

- The full covariance matrix is very complicated.
- Variance of the variance
- Variance of the skewness
- Variance of the kurtosis
- Covariance terms...
- Must actually use the sample central moments (not the true central moments)
- But could be done with a little help from Mathematica...

$$
\Sigma_{j}=\frac{1}{N_{j}} \times
$$

$$
\left(\begin{array}{ccc}
K_{2} & K_{3} & K_{4} \\
- & 2 K_{2}^{2}+K_{4} & 6 K_{2} K_{3}+K_{5} \\
- & - & 6 K_{2}^{3}+9 K_{4} K_{2}+9 K_{3}^{2}+K_{6} \\
- & - & -
\end{array}\right.
$$

$$
\left.\begin{array}{c}
6 K_{2} K_{3}+K_{5} \\
12 K_{2}^{3}+14 K_{4} K_{2}+6 K_{3}^{2}+K_{6} \\
72 K_{3} K_{2}^{2}+18 K_{5} K_{2}+30 K_{3} K_{4}+K_{7} \\
96 K_{2}^{4}+204 K_{4} K_{2}^{2}+216 K_{3}^{2} K_{2}+28 K_{6} K_{2}+34 K_{4}^{2}+48 K_{3} K_{5}+K_{8}
\end{array}\right)
$$

The MeMo Likelihood (2)

- How many moments are needed?
- More moments \rightarrow more information
- With first 3 we already have $\sim 90 \%$ of the information
- With first 4 , we have close to 100%.

The MeMo Likelihood (3)

- Comparison between MeMo and full likelihood with first 4 moments:

The Inverse Lensing Problem (2)

- The non-gaussian scatter of 10^{5} supernovae in the Hubble diagram will tell us about σ_{8} up to $\sim 7 \%$ precision!

Quartin, Marra \& Amendola 1307.1155 (PRD)

oint posteriors

What IS a standard candle?

- Supernovae are assumed to be a standard candle
- Intrinsic magnitude $M \rightarrow$ const. in $z+$ gaussian scatter
- A fine-tuned $\mathrm{M}(\mathrm{z}) \rightarrow$ no acceleration \rightarrow no Nobel prize
- So why a Nobel prize?
- It agrees with CMB \& BAO (baryon acoustic oscillations)
- Occam's Razor \rightarrow acceleration is the simplest model!
- Apply same reasoning for intrinsic non-gaussianity
- Add nuisance parameters for intrinsic central moments
- We tested this idea with the SNLS 3-year catalog

Proof-of-concept: SNLS 3-year data

SNLS 3-year results with $\mu_{4, \text { int }}=0$

Quartin \& Castro (upcoming) σ_{8}

Conclusions

- SNe Lensing has already been detected at ~3O (1307.2566)
- But not detected from SNe data alone!
- Detailed lensing modeling important to avoid biases
- Lensing degradation smaller than previous estimate
- Supernova can constrain also perturbation parameters!
- 08 to percent level with LSST.
- SNLS3 (at face value) $\rightarrow 08<1.6$ @ 2σ
- Can also constrain halo profiles and dark matter clustering Fedeli \& Moscardini (1401.0011)

Grazie!

Extra slides

