OAB – Univ. Bologna – Jan 2014

Measuring σ_8 with Weak Lensing of SNe

In collaboration with: Luca Amendola, Tiago de Castro, Kimmo Kainulainen & Valerio Marra

Miguel Quartin Instituto de Física Univ. Federal do Rio de Janeiro

The Hubble's Law

Lemaître (and later Hubble)* found out that galaxies are, in average, receding from us;

- The redshift z is linear with distance
- The velocity is approx. also linear with distance
 - * Stigler's law of eponymy: "No scientific discovery is named after its

original discoverer."

 $z = \frac{H_0}{c}D$

 $v = H_0 D + \mathcal{O}\left(\frac{v}{c}\right)^2$

Distances in Cosmology

Inside the solar system \rightarrow Laser Ranging

- Shoot a strong laser at a planet and measure the time it takes to be reflected back to us
- Inside the galaxy \rightarrow stellar parallax
 - Requires precise astrometry
 - Maximum distance measured: 500 pc (1600 ly), by the Hipparcos satellite (1989–1993)
 - Dec. 2013 → Gaia satellite launched (2013 2019) → parallax up to ~50 kpc
- Compare with:
 - Milky Way → ~15 kpc radius
 - Andromeda $\rightarrow \sim 1 \text{ Mpc}$

Standard Candles

- A plot of distance vs. z is called a Hubble Diagram
- To measure distances at z >~ 0.0001 (~0.4 Mpc) we need good standard candles (known intrinsic luminosity)
- There are 2 classic standard (rigorously, standardizible) candles in cosmology:
 - Cepheid variable stars (0 < z < 0.05) * *Jones et al.*, 1304.0768
 - Type Ia Supernovae $(0 < z < 1.91^*)$
- Both classes have intrinsic variability, but there are empirical relations that allow us to calibrate and standardize them

Type Ia Supernovae

Type Ia Supernovae (3)

Supernovae (SNe) are very bright explosions of stars
There are 2 major kinds of SNe

Core-collapse (massive stars which run out of H and He)

Collapse by mass accretion in binary systems (type Ia)

- White dwarf + red giant companion (single degenerate)
- White dwarf + White dwarf (double degenerate)
- Type Ia SNe explosion → ~ standard energy release

Chandrasekar limit on white dwarf mass: M_{max} = 1.44 M_{sun}

• Beyond this \rightarrow instability \rightarrow explosion

SNe Ia → less intrinsic scatter + strong correlation between brightness & duration

Type Ia Supernovae (4)

- SNe Ia are so far the only proven standard(izible) candles for cosmology
- With good measurements → scatter < 0.15 mag in the Hubble diagram
- But arguably they are subject to more systematic effects than BAO (baryon acoustic oscillations) & CMB
 - Systematic errors already the dominant part (N_{SNe} ~ 1000)
 - In the next ~10 years \rightarrow statistics will increase by 100x
 - Huge effort to improve understanding of systematics

Howell, 1011.0441 (review of SNe)

SNe Systematics

Systematic	SNLS3 ¹⁴³	CfA ²⁷ /ESSENCE ⁴⁴	SDSS-II ²⁶	SCP ²⁸
Best fit w (assuming flatness)		-0.987	-0.96	-0.997
Statistical error		0.067	0.06	0.052
Total stat+systematic error		0.13	0.13	0.08
Systematic error breakdown				
Flux reference	0.053	0.02	0.02	0.042
Experiment zero points	0.01	0.04	0.030	0.037
Low-z photometry	0.02	0.005		
Landolt bandpasses	0.01		0.008	
Local flows	0.014		0.03	
Experiment bandpasses	0.01		0.016	
Malmquist bias model	0.01	0.02		0.026
Dust/Color-luminosity (β)	0.02	0.08	0.013	0.026
SN Ia Evolution		0.02		
Restframe U band			0.104	0.010
Contamination				0.021
Galactic Extinction			0.022	0.012

Table 1: Best-fit values of $\langle w \rangle$ and error estimates. For the CfA3/ESSENCE column

Supernova Lensing

Standard SNe analysis \rightarrow geodesics in FLRW Real universe \rightarrow structure (filaments & voids) \rightarrow weaklensing (WL) → very skewed PDF (Probab. Distr. Function)! ■ Most SNe \rightarrow demagnified a little (light-path in voids) • A few \rightarrow magnified "a lot" (path near large structures) The lensing PDF is the key quantity ■ Hard to measure → need many more SNe Can be computed: ray-tracing in N-body simulations Takahashi et al. 1106.3823 See: Hilbert et al. astro-ph/0703803 ■ N-body \rightarrow too expensive to do likelihoods \rightarrow many parameter values (many Ω_{m0} , σ_8 , w_{DE} , etc.) 11

Supernova Lensing (2)

Supernova light travels huge distances
 Lensing → on average → no magnification (photon # conser.)
 Important quantity → magnification PDF
 Zero mean; very skewed (most objects de-magnified)

Adds non-gaussian dispersion to the Hubble diagram

 $\bar{\mu} \equiv \text{magn} = \frac{1}{(1-\kappa)^2 - \gamma^2} \simeq \frac{1}{(1-\kappa)^2}$

 $\kappa(z_s) = \int_0^{r_s} dr \,\rho_{M0} G(r, r_s) \delta_M(r, t(r))$

Function of three $d_A(z)$

Supernova Lensing (3)

Note that the N-body approach might not be appropriate

- Supernovae light bundles form a very thin (< 1 AU) pencil</p>
- N-body simulations coarse grained in scales >>> 1 AU
- Relativistic effects (e.g. Ricci + Weyl focusing) might be important

Clarkson, Ellis, Faltenbacher, Maartens, Umeh, Uzan (1109.2484, MNRAS)

There are also corrections due to a neglected Doppler term Bolejko, Clarkson, Maartens, Bacon, Meures, Beynon (1209.3142, PRL)

We neglect these corrections here

The Lensing PDF

Finite sources

Takahashi et al. 1106.3823

15

A New Method

We need something faster → stochastic GL analysis (sGL)
 Populate the universe with NFW halos → Halo Model
 need prescriptions for mass fun. & concentration param.
 In a given direction, draw nearby distribution of halos
 Bin in distance & impact parameter

compute the convergence (fast)

K. Kainulainen & V. Marra 0906.3871 (PRD) 0909.0822 (PRD)

A New Method (2)

NFW Profile

Supernova Lensing (4)

sGL \rightarrow fast way to compute the κ PDF

- accurate when compared to N-body simulations
- many redshift bins; different cosmological parameters
- fast enough to be used on likelihood analysis
- Mathematica code available at www.turbogl.org
- We computed the κPDF for a broad parameter range
 PDF is well parametrized by the *first 3 central moments* μ₂, μ₃, μ₄
 - Lensing depends mostly on Ω_{m0} & σ₈
 Very weak dependence on: w, h, Ω_{k0}, n_s, w, ...
 Marra, Quartin & Amendola 1304.7689 (PRD)

Supernova Lensing (5)

Likelihood for SNe analysis → convolution of lensing PDF and intrinsic (standard) SNe PDF

 $L(\mu) = \int dy P_{wl}(y, \Omega_{m0}, \sigma_8, \cdots (P_{SN}) \Delta m - \mu - y, \sigma)$

It is useful to compute the *first central moments* of the PDF
Mean (zero); variance; skewness & kurtosis
"Cumulants cumulate":

Convolution variance = lensing var + intrinsic var
Convolution skewness = lensing skew + "0"

We computed the κPDF for many cosmological params.

Gaussian!

The Lensing PDF (3)

Variance, Skewness & Kurtosis

Fitting Functions

We provide accurate and flexible analytical fits for the variance, skewness & kurtosis

Significant improvement upon current HL fit: $\sigma_{\text{lens}}^{\text{HL}} = 0.093z$

 $egin{array}{rcl} 0 &\leq & z &\leq 3 \ 0.35 &\leq & \sigma_8 &\leq 1.25 \ 0.1 &\leq \Omega_{m0} &\leq 0.52 \end{array}$

Fitting Functions (2)

We find that the variance is ~2x smaller than some previous estimates *D. Holz & E. Linder 0412173 (ApJ)*But are in better agreement w/ SNLS *Jonsson et al. 1002.1374*

 Conclusion → high-z supernovae are more useful than sometimes thought

 Lensing bias less of a problem

(MNRAS)

Lensing bias

Exagerated effect

Amendola, Kainulainen, Marra & Quartin (1002.1232, PRL) 28

The Inverse Lensing Problem

Can we turn Noise into Signal?

Can we learn about cosmology from the scatter of supernovae in the Hubble diagram? Dodelson &

Answer: YES! We can constrain σ₈!

Dodelson & Vallinotto (astro-ph/0511086)

<u>Caveat 1</u>: no revolutionary precision

• need ~ 10^4 SNe to get to ~10%, ~ 10^6 to get to ~1%

LSST will give us ~10⁶

Caveat 2: need to assume halo profiles: e.g. NFW

- It is a very good cross-check
- It is a new observable

Quartin, Marra & Amendola 1307.1155 (PRD)

Precise parameter estimation in ACDM not enough
Very important to cross-check observations
Rule-out systematics
Very important to cross-check theoretical assumptions
e.g.: homogeneity, isotropy

What is σ_8 ?

 σ₈ is the amplitude of the matter fluctuations at the scale of 8 Mpc/h

$$\Delta^2(r,z) \equiv \left(\frac{\delta M}{M}\right)^2 = \int_0^\infty \frac{dk}{k} \Delta^2(k,z) W^2(kr)$$
$$\Delta^2(k,z) \equiv \frac{k^3}{2\pi^2} P(k,z) = \delta_{H0}^2 \left(\frac{ck}{a_0 H_0}\right)^{3+n_s} T^2(k/a_0) D^2(z)$$

 $\Delta(r=8 \text{ Mpc}/h, z=0) = \sigma_8$

What is σ_8 ? (2)

 σ_8 measurements are usually done in either of 3 ways:

- CMB → measure fluctuations at z = 1090 and propagate them to z = 0
- Cosmic Shear \rightarrow requires galaxy shapes

Cluster abundance

 Some tension between these measurements
 Cross-check important!
 Planck XX (1303.5080)

The Inverse Lensing Problem (2)

Information from lensing ↔ full, lensing-dependent likelihood:

 $L(\mu) = \int dy P_{wl}(y, \Omega_{m0}, \sigma_8, \cdots) P_{SN}(\Delta m - \mu - y, \sigma)$

It works BUT there is a faster & more interesting method: the Method of the Moments (MeMo)

- Instead of the full lensing PDF we just use the first 3 central moments
- Advantages: faster; directly related to observations → simpler to control systematics step-by-step
- Disadvantage: more involved equations

The MeMo Likelihood

Using the first 4 moments, we write:

sing the first 4 moments, we write: $L_{\text{MeMo}}(\Omega_{m0}, \sigma_8, \{\sigma_{\text{int},j}\}) = \exp\left(-\frac{1}{2}\sum_{j}^{\text{bins}}\chi_j^2\right)$

$$\chi_j^2 = (\boldsymbol{\mu} - \boldsymbol{\mu}_{\text{fid}})^{\tau} \Sigma_j^{-1} (\boldsymbol{\mu} - \boldsymbol{\mu}_{\text{fid}})$$
$$\boldsymbol{\mu} = \{\mu_1', \mu_2, \mu_3, \mu_4\},$$

Very complicated covariance matrix: if the PDFs were gaussian, it would be:

$$\Sigma_{ ext{gau},j} = rac{1}{N_j} egin{pmatrix} \sigma_j^2 & 0 & 0 & 0 \ 0 & 2\sigma_j^4 & 0 & 12\sigma_j^6 \ 0 & 0 & 6\sigma_j^6 & 0 \ 0 & 12\sigma_j^6 & 0 & 96\sigma_j^8 \end{bmatrix}$$

Scary Movie

The full covariance matrix is very complicated. Variance of the variance Variance of the skewness Variance of the kurtosis Covariance terms... Must actually use the sample central moments (not the true central moments) But could be done with a little help from Mathematica... $\Sigma_j = \frac{1}{N_j} \times$ $\begin{pmatrix} K_2 & K_3 & K_4 \\ - & 2K_2^2 + K_4 & 6K_2K_3 + K_5 \\ - & - & 6K_2^3 + 9K_4K_2 + 9K_3^2 + K_6 \end{pmatrix}$ $6K_2K_3 + K_5$ $12K_2^3 + 14K_4K_2 + 6K_3^2 + K_6$ $72K_3K_2^2 + 18K_5K_2 + 30K_3K_4 + K_7$ $96K_2^4 + 204K_4K_2^2 + 2\overline{16}K_3^2K_2 + 28K_6K_2 + 34K_4^2 + 48K_3K_5 + K_8$

The MeMo Likelihood (2)

How many moments are needed?

- More moments \rightarrow more information
- With first 3 we already have ~90% of the information
 - With first 4, we have close to 100%.

The MeMo Likelihood (3)

Comparison between MeMo and full likelihood with first 4 moments:

The Inverse Lensing Problem (2)

The *non-gaussian* scatter of 10^5 supernovae in the Hubble diagram will tell us about σ_8 up to ~7% precision!

Quartin, Marra & Amendola 1307.1155 (PRD)

40

σ int posteriors

What IS a standard candle?

Supernovae are assumed to be a standard candle Intrinsic magnitude $M \rightarrow \text{const.}$ in z + gaussian scatter A fine-tuned $M(z) \rightarrow$ no acceleration \rightarrow no Nobel prize So why a Nobel prize? It agrees with CMB & BAO (baryon acoustic oscillations) Occam's Razor \rightarrow acceleration is the simplest model! Apply same reasoning for intrinsic non-gaussianity Add nuisance parameters for intrinsic central moments We tested this idea with the SNLS 3-year catalog

Proof-of-concept: SNLS 3-year data

SNLS 3–year results with $\mu_{4,int} = 0$

Conclusions

SNe Lensing has already been detected at ~3σ (1307.2566) But not detected from SNe data alone! Detailed lensing modeling important to avoid biases Lensing degradation smaller than previous estimate Supernova can constrain also perturbation parameters! **\sigma** to percent level with LSST. SNLS3 (at face value) $\rightarrow \sigma 8 < 1.6 @ 2\sigma$ Can also constrain halo profiles and dark matter clustering Fedeli & Moscardini (1401.0011)

Extra slides

