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The Hubble's LawThe Hubble's Law
 Lemaître (and later Hubble)* found out that galaxies are, Lemaître (and later Hubble)* found out that galaxies are, 

in average, receding from us;in average, receding from us;
 The redshift The redshift zz is linear with distance is linear with distance
 The velocity is approx. also linear with distanceThe velocity is approx. also linear with distance

 * Stigler's law of eponymy: "No scientific discovery is * Stigler's law of eponymy: "No scientific discovery is 
named after its named after its 
original discoverer."original discoverer."
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109 anos-luz 2 x 109 anos-luz
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Distances in CosmologyDistances in Cosmology

 Inside the solar system  Laser Ranging→Inside the solar system  Laser Ranging→
 Shoot a strong laser at a planet and measure the time it Shoot a strong laser at a planet and measure the time it 

takes to be reflected back to ustakes to be reflected back to us
 Inside the galaxy  stellar parallax→Inside the galaxy  stellar parallax→

 Requires precise astrometryRequires precise astrometry
 Maximum distance measured: 500 pc  (1600 ly), by the Maximum distance measured: 500 pc  (1600 ly), by the 

Hipparcos satellite (1989–1993)Hipparcos satellite (1989–1993)
 Dec. 2013  Gaia satellite launched (2013 – 2019)  → →Dec. 2013  Gaia satellite launched (2013 – 2019)  → →

parallax up to ~50 kpcparallax up to ~50 kpc
 Compare with:Compare with:

 Milky Way  ~15 kpc radius→Milky Way  ~15 kpc radius→
 Andromeda  ~1 Mpc→Andromeda  ~1 Mpc→
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Standard CandlesStandard Candles

 A plot of distance vs. z is called a A plot of distance vs. z is called a Hubble DiagramHubble Diagram
 To measure distances at To measure distances at z >~ 0.0001z >~ 0.0001 (~0.4 Mpc) we need  (~0.4 Mpc) we need 

good standard candles (known intrinsic luminosity)good standard candles (known intrinsic luminosity)
 There are 2 classic standard (rigorously, There are 2 classic standard (rigorously, standardiziblestandardizible) ) 

candles in cosmology:candles in cosmology:
 Cepheid variable stars (Cepheid variable stars (0 < z < 0.050 < z < 0.05))
 Type Ia Supernovae  (Type Ia Supernovae  (0 < z < 1.91*0 < z < 1.91*))

 Both classes have Both classes have intrinsic variabilityintrinsic variability, but there are , but there are 
empirical relations that allow us to calibrate and empirical relations that allow us to calibrate and 
standardizestandardize them them

* Jones et al.,  1304.0768
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SupernovaeSupernovaeType Ia SupernovaeType Ia Supernovae
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Type Ia Supernovae  (3)Type Ia Supernovae  (3)

 Supernovae (SNe) are Supernovae (SNe) are very brightvery bright explosions of stars explosions of stars
 There are 2 major kinds of SNeThere are 2 major kinds of SNe

 Core-collapse (massive stars which run out of H and He)Core-collapse (massive stars which run out of H and He)
 Collapse by mass accretion in binary systems (Collapse by mass accretion in binary systems (type Iatype Ia))

 White dwarf + red giant companion (single degenerate)White dwarf + red giant companion (single degenerate)
 White dwarf + White dwarf (double degenerate)White dwarf + White dwarf (double degenerate)
 Type Ia SNe explosion  ~ standard energy release→Type Ia SNe explosion  ~ standard energy release→

 Chandrasekar limit on white dwarf mass: MChandrasekar limit on white dwarf mass: Mmaxmax = 1.44 M = 1.44 Msunsun

 Beyond this  instability  explosion→ →Beyond this  instability  explosion→ →
 SNe Ia  less intrinsic scatter + strong correlation between  →SNe Ia  less intrinsic scatter + strong correlation between  →

brightness & durationbrightness & duration
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Type Ia Supernovae  (4)Type Ia Supernovae  (4)

 SNe Ia are so far the only SNe Ia are so far the only provenproven standard(izible) candles  standard(izible) candles 
for cosmologyfor cosmology

 With good measurements    scatter < →With good measurements    scatter < → 0.15 mag0.15 mag in the  in the 
Hubble diagramHubble diagram

 But arguably they are subject to more systematic effects But arguably they are subject to more systematic effects 
than BAO (baryon acoustic oscillations) & CMBthan BAO (baryon acoustic oscillations) & CMB
 Systematic errors already the dominant part (NSystematic errors already the dominant part (NSNeSNe ~ 1000) ~ 1000)

 In the next ~10 years  statistics will increase by →In the next ~10 years  statistics will increase by → 100x100x
 Huge effort to improve understanding of systematicsHuge effort to improve understanding of systematics

Howell,  1011.0441 (review of SNe)
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SNe SystematicsSNe Systematics
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Hubble diagramHubble diagram
  ddLL(z)(z)
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Supernova LensingSupernova Lensing
 Standard SNe analysis  geodesics in FLRW→Standard SNe analysis  geodesics in FLRW→
 Real universe  structure (filaments & voids)   weak-→ →Real universe  structure (filaments & voids)   weak-→ →

lensing (WL)  →lensing (WL)  → very skewed PDF very skewed PDF (Probab. Distr. Function)!(Probab. Distr. Function)!
 Most SNe  demagnified a little  (light-path in voids) →Most SNe  demagnified a little  (light-path in voids) →
 A few  magnified “a lot”  (path near large structures)→A few  magnified “a lot”  (path near large structures)→

 The lensing PDF is the The lensing PDF is the key quantitykey quantity
 Hard to measure  need many more SNe→Hard to measure  need many more SNe→
 Can be computed: ray-tracing in N-body simulationsCan be computed: ray-tracing in N-body simulations

 See:See:

 N-body  too expensive to do →N-body  too expensive to do → likelihoodslikelihoods   many →   many →
parameter values  (many parameter values  (many ΩΩm0m0  , , σσ88  , w, wDE DE , etc.), etc.)

Hilbert et al.  astro-ph/0703803
Takahashi et al.  1106.3823
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Supernova Lensing  (2)Supernova Lensing  (2)

 Supernova light travels huge distancesSupernova light travels huge distances
 Lensing  →Lensing  → on averageon average  no magnification (photon # conser.)→  no magnification (photon # conser.)→

 Important quantity  magnification PDF →Important quantity  magnification PDF →
 Zero mean; very skewed (most objects de-magnified)Zero mean; very skewed (most objects de-magnified)

 Adds Adds non-gaussian dispersionnon-gaussian dispersion to the Hubble diagram to the Hubble diagram

Function of three d
A
(z)
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Supernova Lensing  (3)Supernova Lensing  (3)
 Note that the N-body approach might not be appropriateNote that the N-body approach might not be appropriate

 Supernovae light bundles form a very thin (< 1 AU) pencilSupernovae light bundles form a very thin (< 1 AU) pencil
 N-body simulations coarse grained in scales >>> 1 AUN-body simulations coarse grained in scales >>> 1 AU
 Relativistic effects (e.g. Ricci + Weyl focusing) might be Relativistic effects (e.g. Ricci + Weyl focusing) might be 

importantimportant

 There are also corrections due to a neglected Doppler termThere are also corrections due to a neglected Doppler term

 We neglect these corrections hereWe neglect these corrections here

Clarkson, Ellis, Faltenbacher, Maartens, Umeh,  Uzan
  (1109.2484, MNRAS)

Bolejko, Clarkson, Maartens, Bacon, Meures, Beynon  
(1209.3142, PRL)
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The Lensing PDFThe Lensing PDF

magnificationde-magnif.
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Finite Finite 
sourcessources

Takahashi et al.  1106.3823
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A New MethodA New Method
 We need something faster  →We need something faster  → stochastic GL analysis (sGL)stochastic GL analysis (sGL)

 Populate the universe with NFW halos  Halo Model →Populate the universe with NFW halos  Halo Model →
 need prescriptions for mass fun. & concentration param.need prescriptions for mass fun. & concentration param.

 In a given direction, draw nearby distribution of halosIn a given direction, draw nearby distribution of halos
 BinBin in distance & impact parameter in distance & impact parameter
 compute the compute the 

      convergence (convergence (fastfast))

K. Kainulainen & V. Marra
0906.3871  (PRD)
0909.0822  (PRD)
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A New Method  (2)A New Method  (2)
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NFW NFW 
ProfileProfile
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Supernova Lensing  (4)Supernova Lensing  (4)

 sGL  →sGL  → fast wayfast way to compute the κ to compute the κPDF PDF 
 accurate when compared to N-body simulationsaccurate when compared to N-body simulations
 many redshift bins; many redshift bins; different cosmologicaldifferent cosmological parameters parameters
 fast enough to be used on likelihood analysisfast enough to be used on likelihood analysis
 Mathematica code available at www.turbogl.orgMathematica code available at www.turbogl.org

 We computed the We computed the κκPDF for a broad  parameter rangePDF for a broad  parameter range
 PDF is well parametrized by the  PDF is well parametrized by the  first 3 central momentsfirst 3 central moments

 Lensing depends mostly on Lensing depends mostly on ΩΩm0m0    & & σσ88

 Very weak dependence on:  w, h, Very weak dependence on:  w, h, ΩΩk0 k0 , n, ns s , w, ..., w, ...

 Marra, Quartin & Amendola  1304.7689 (PRD)
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Supernova Lensing  (5)Supernova Lensing  (5)

 Likelihood for SNe analysis  →Likelihood for SNe analysis  → convolutionconvolution of  of lensing PDFlensing PDF  
and intrinsic (standard) and intrinsic (standard) SNe PDFSNe PDF

 It is useful to compute the It is useful to compute the first central momentsfirst central moments of the PDF of the PDF
 Mean (zero); variance; skewness & kurtosisMean (zero); variance; skewness & kurtosis
 ““Cumulants cumulate”:Cumulants cumulate”:

 Convolution variance = lensing var + intrinsic varConvolution variance = lensing var + intrinsic var
 Convolution skewness = lensing skew + “0”Convolution skewness = lensing skew + “0”

 We computed the We computed the κκPDF for many cosmological params.PDF for many cosmological params.

Gaussian!
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The Lensing PDF  (2)The Lensing PDF  (2)
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The Lensing PDF  (3)The Lensing PDF  (3)
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Variance, Skewness & KurtosisVariance, Skewness & Kurtosis
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Fitting FunctionsFitting Functions

 We provide accurate and flexible analytical fits for the We provide accurate and flexible analytical fits for the 
variance, skewness & kurtosisvariance, skewness & kurtosis
 Significant improvement upon current HL fit:Significant improvement upon current HL fit:
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Fitting Functions  (2)Fitting Functions  (2)

 We find that the variance is ~2x smaller than some We find that the variance is ~2x smaller than some 
previous estimatesprevious estimates
 But are in better agreement w/ SNLSBut are in better agreement w/ SNLS

D. Holz & E. Linder  0412173  (ApJ)
Jonsson et al.  1002.1374  
(MNRAS)

 Conclusion  high-z →Conclusion  high-z →
supernovae are supernovae are more more 
usefuluseful than  than 
sometimes thoughtsometimes thought

 Lensing bias less of a Lensing bias less of a 
problemproblem
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Lensing Lensing 
biasbias

Exagerated 
effect

Amendola, Kainulainen, Marra & Quartin (1002.1232, PRL)
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The Inverse Lensing ProblemThe Inverse Lensing Problem

 Can we turn Noise into Signal?Can we turn Noise into Signal?
 Can we learn about cosmology from the scatter of Can we learn about cosmology from the scatter of 

supernovae in the Hubble diagram?supernovae in the Hubble diagram?
 Answer: Answer: YES!YES! We can constrain  We can constrain σσ88! ! 

 Caveat 1:Caveat 1: no revolutionary precision no revolutionary precision
 need ~10need ~1044 SNe to get to ~10%, ~10 SNe to get to ~10%, ~106 6 to get to ~1%to get to ~1%

 LSST will give us ~10LSST will give us ~1066  
 Caveat 2:Caveat 2: need to assume halo profiles: e.g. NFW need to assume halo profiles: e.g. NFW

 It is a very good It is a very good cross-checkcross-check
 It is a new observableIt is a new observable

Dodelson & Vallinotto  
(astro-ph/0511086)

Quartin, Marra & Amendola  1307.1155 (PRD)
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Precision Cosmology vs.Precision Cosmology vs.
Accuracy CosmologyAccuracy Cosmology

 Precise parameter estimation in Precise parameter estimation in ΛΛCDM CDM not enoughnot enough
 Very important to cross-check Very important to cross-check observationsobservations

 Rule-out systematicsRule-out systematics
 Very important to cross-check Very important to cross-check theoretical assumptionstheoretical assumptions

 e.g.: homogeneity, isotropye.g.: homogeneity, isotropy
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What is What is σσ88??

 σσ88 is the amplitude of the matter fluctuations at the scale  is the amplitude of the matter fluctuations at the scale 
of 8 Mpc/hof 8 Mpc/h
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What is What is σσ88?  (2)?  (2)

 σσ88 measurements are usually done in either of 3 ways: measurements are usually done in either of 3 ways:
 CMB  measure fluctuations at z = 1090 and propagate →CMB  measure fluctuations at z = 1090 and propagate →

them to z = 0them to z = 0
 Cosmic Shear  requires galaxy shapes→Cosmic Shear  requires galaxy shapes→
 Cluster abundanceCluster abundance

 Some tension between Some tension between 
these measurementsthese measurements
 Cross-check important!Cross-check important!

Planck XX  (1303.5080)
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The Inverse Lensing Problem  (2)The Inverse Lensing Problem  (2)

 Information from lensing  full, lensing-dependent ↔Information from lensing  full, lensing-dependent ↔
likelihood:likelihood:

 It works BUT there is a faster & more interesting It works BUT there is a faster & more interesting 
method: the Method of the Moments (method: the Method of the Moments (MeMoMeMo))
 Instead of the full lensing PDF we just use the first 3 Instead of the full lensing PDF we just use the first 3 

central momentscentral moments
 AdvantagesAdvantages: faster; directly related to observations  →: faster; directly related to observations  →

simpler to control systematics step-by-stepsimpler to control systematics step-by-step
 DisadvantageDisadvantage: more involved equations: more involved equations
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The MeMo LikelihoodThe MeMo Likelihood

 Using the first 4 moments, we write:Using the first 4 moments, we write:

 Very complicated covariance matrix: if the PDFs were Very complicated covariance matrix: if the PDFs were 
gaussian, it would be:gaussian, it would be:
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Scary MovieScary Movie

 The full covariance matrix is very complicated.The full covariance matrix is very complicated.
 Variance of the varianceVariance of the variance
 Variance of the skewnessVariance of the skewness
 Variance of the kurtosisVariance of the kurtosis
 Covariance terms...Covariance terms...

 Must actually use the Must actually use the sample central momentssample central moments (not the  (not the 
true central moments)true central moments)
 But could be done with a little help from Mathematica...But could be done with a little help from Mathematica...
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Hubble diagramHubble diagram



  3838

The MeMo Likelihood  (2)The MeMo Likelihood  (2)

 How many moments are needed? How many moments are needed? 
 More moments  more information→More moments  more information→
 With first 3 we already have ~90% of the informationWith first 3 we already have ~90% of the information

 With first 4, we have close to 100%.With first 4, we have close to 100%.
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The MeMo Likelihood  (3)The MeMo Likelihood  (3)

 Comparison between MeMo and full likelihood with Comparison between MeMo and full likelihood with 
first 4 moments:first 4 moments:



  4040

The Inverse Lensing Problem (2)The Inverse Lensing Problem (2)

 The The non-gaussiannon-gaussian  scatterscatter of 10 of 1055 supernovae in the Hubble  supernovae in the Hubble 

diagram will tell us about  diagram will tell us about  σσ88  up to    up to  ~7%~7%  precision!  precision!

Quartin, Marra & Amendola 1307.1155 (PRD)



  4141

σσint posteriorsint posteriors
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What IS a standard candle?What IS a standard candle?

 Supernovae are assumed to be a standard candleSupernovae are assumed to be a standard candle
 Intrinsic magnitude M  const. in z  +  gaussian scatter→Intrinsic magnitude M  const. in z  +  gaussian scatter→
 A fine-tuned M(z)  no acceleration  no Nobel prize→ →A fine-tuned M(z)  no acceleration  no Nobel prize→ →

 So why a Nobel prize?So why a Nobel prize?
 It agrees with CMB & BAO (baryon acoustic oscillations)It agrees with CMB & BAO (baryon acoustic oscillations)
 Occam's Razor  acceleration is the simplest model!→Occam's Razor  acceleration is the simplest model!→

 Apply same reasoning for intrinsic non-gaussianityApply same reasoning for intrinsic non-gaussianity
 Add nuisance parameters for intrinsic central momentsAdd nuisance parameters for intrinsic central moments
 We tested this idea with the SNLS 3-year catalogWe tested this idea with the SNLS 3-year catalog
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Proof-of-concept: SNLS 3-year dataProof-of-concept: SNLS 3-year data

 σ8 < 1.6  @  2σ

Quartin & Castro  (upcoming)
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Proof-of-concept: SNLS 3-year dataProof-of-concept: SNLS 3-year data
Quartin & Castro  (upcoming)
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ConclusionsConclusions
 SNe Lensing has SNe Lensing has alreadyalready been detected at ~3 been detected at ~3σσ (1307.2566) (1307.2566)

 But But notnot detected from SNe data  detected from SNe data alonealone!!
 Detailed lensing modeling important to avoid biasesDetailed lensing modeling important to avoid biases
 Lensing degradation smaller than previous estimateLensing degradation smaller than previous estimate
 Supernova can constrain also Supernova can constrain also perturbationperturbation parameters! parameters!

 σσ88  to percent level with LSST.  to percent level with LSST.
 SNLS3 (at face value)   →SNLS3 (at face value)   → σσ8 < 1.6  8 < 1.6  @  2@  2σσ

 Can also constrain halo profiles and dark matter Can also constrain halo profiles and dark matter 
clusteringclustering

Grazie!
Fedeli & Moscardini  (1401.0011)
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Extra slidesExtra slides
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