Accretion discs solutions in AGN




The principles of accretion. |

Shakura & Sunyaev (1973)

Gas falling onto a compact object loses its potential energy, which is first converted into kinetic
energy

If the infall is not prevented, the gas will fall into the compact object without being able to
radiate

The gas has finite angular momentum: it cannot fall straight onto the compact object, since
this is prevented by the momentum barrier

Through viscous friction with other gas particles and by the resulting momentum transfer
outward, the gas will assemble in a disc oriented perpendicular to the direction of the angular
momentum vector

The frictional forces in the gas are expected to be much smaller than the gravitational force,
hence the disc will locally rotate with approximately the Keplerian velocity. Each gas element
interacts with the surrounding elements, thus redistributing the energy and placing at the
minimum state of energy corresponding to the circular orbit

Since a Keplerian disc rotates differentially (i.e., angular velocity depends on radius), the gas
in the disc will be heated by internal friction, which causes a slight deceleration of the
rotational velocity, whereby the gas will slowly move inwards

The energy source for heating the gas in the disc is provided by the inward motion, namely the
conversion of potential energy into kinetic energy, which is then converted into internal energy
(heat) by friction - emission of the disc as a blackbody in the case of optically thick disc
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According to the virial theorem, 2T+U=0 - half of the potential (‘binding’) energy
released is converted into kinetic energy (the rotational energy of the disc), the other
half can be converted into internal energy (heat) — see the following slides

Potential gravitational energy - kinetic energy of the infalling gas - heat (through
viscosity among disc annuli) - thermal emission from the disc

Mass of the compact object (e.g., BH)

£
GM.m G’M.m GM.m Ar Energy released due to a mass m
A = —— — ——— ~ falling from a radius r+Artor
r r 4+ AT r r M. is assumed to dominate the gravitational potential

v

Half is converted into heat: E,,=AE/2

1 GMem
Eheat — 5 7“2 AT
Mon
AL = GMer

2742 Further details later in the lesson
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As described in the optically thick, geometrically thin accretion disc theory (see following slides),
the temperature profile of the resulting emission from the AD is independent on the detailed
mechanism of dissipation (the equations do not explicitly contain the viscosity term)

The emission of the AD increases inwards and, at first approximation, can be considered the
superposition of black bodies consisting of rings with different radii at different temperatures.
The resulting shape does not have a Planck shape but instead shows a much broader energy
distribution

The resulting spectrum from such an optically thick accretion disc is fairly flat, where the lower
and upper boundaries of the frequency interval are determined by the lowest and highest
temperatures (at the outer and inner radius) of the AD

Most of the luminosity comes from the inner part of the disc (since T prop. R¥4) and thus
depends on how far the disc extends inside (i.e., ISCO...)

The physical mechanism that is responsible for the viscosity is unknown. Molecular viscosity

likely provides a minor contribution. Possibly, the viscosity is produced by turbulent flows in the

disc and/or by magnetic fields (MRI, magneto-rotational instability), which become spun up by
differential rotation and thus amplified, so that these fields may act as an effective friction
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ASSUMPTIONS:
Maisc<<Mgp (Ms here)
H<<r (vertical size << size of the disc)

Keplerian rotation implies a velocity profile
which is not solid rotation - there exist shear
forces and, hence, transfer of angular
momentum from annulus to annulus.

If the angular momentum is transferred
outward, then the matter can fall onto the
compact object and be accreted

We can see the accretion disc + compact
object system as an efficient machine for
slowly lowering material in the gravitational

potential of the accreting object and ‘extracting’

energy as radiation. A vital part consists in the
process converting the orbital kinetic energy
into heat

|
I
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Main adopted textbooks
Accretion Power in Astrophysics
(Frank, King, Raine)

High Energy Astrophysics
(Courvoisier)

High Energy Astrophysics (Longair)
High Energy Astrophysics (Melia)
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Particle transport across a boundary

Random motion of particles of velocity Vo(R+A)

L and free mean path A (where A <<

size of the disc)

Particles A move from the inside
annulus towards the outside annulus,
and B move in the opposite direction

The orbital velocity v¢ at a given radius
is linked to the angular velocity Q(r)

v = QUr) X r

The velocity increases at smaller radii
(i.e., the annuli closer to the compact
object move faster than the outer ones)

at the plosition r-A2

ve (1'— \/2)

=Q(r—XA/2)x (r—XA/2) >vs(r+A/2)



Summarizing

Armijo AD theory review
BH

Matter is flowing to the center (increasing
its velocity), while angular momentum is
transported outwards

| JAngular momentum
| Iflow

Angular
Momentum

[ ~ R1/2

| =vsR = (QR)R = QR?

R
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Particles A transport outwards the outside ring a linear momentum Mp X v (r-A2), larger than the
momentum transported in the opposite direction by the particles B, Mg v¢ (r+A/2).

The net transfer of angular momentum L=m vg r across r per unit time due to viscous
transport (due to the different rotational velocity of adjacent annuli) angular is given by

The change of torque across a ring =
change of angular momentum of the ring

()

G(r) = Ma x (r+X/2) x vg(r — A\/2) = Mp x (r — A\/2) x vg(r + \/2) =

= My x (r4+X/2) x Q(r —A/2) x (r —\/2) — Mp x (r —X/2) x Q(r + A/2) x (r + \/2) =

= My x (12 = X2/4) x Q(r — X\/2) — Mp x (r2 = X2/4) x Q(r + \/2) ~
~ My xr?x Q(r—A\/2) — Mg x 12 x Q(r + \/2)

G(r)=t
AL\A_ orque
At

Assuming the randomness of the process and the absence of net transport of matter
due to the 0 random movements (i.e., matter crosses the surface R=constant at
equal rate in both directions, the flow is in equilibrium) and defining Z=p H = surface
mass density of the disc [g/cm?]

My = Mg = 2rnrH)p(r)T = 27rET
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IV — AU kinematic viscosity [cm?/s] U = \U

v thermal speed of the ]
molecules

mean free path spatial scale or  typical velocity of the
characteristic eddies
\ } wavelength of the
Y turbulence
case of molecular transport \ }
in shearing motion Y

case of turbulence
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G(r) = 2mrSor?[Q(r — A/2) — Q(r + \/2)] =

Q
= QWTEETQ)\CZ—
dr
= 27TZW‘3@
dQ dr
G(r) = 2nrivri— = 2nrZuvrs)
dr

Does it agree with our expectations?

Rigid rotation: Q' (=dQ/dr)=0 - G=0 (the torque vanishes, no shearing of

elements)
If Q(r) decreases outwards (as in Keplerian discs), G(r) is negative - the
inner rings lose angular momentum to the outer ones and the gas slowly

spirals in (towards the central object)
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Net torque on a ring of gas between R and R+dR. The ring is subject to
competing torques since it has an inner and a outer radius

oG

G(R+dR) — G(R) = —dR
(R+dR) - G(R) = o5

oG 0(GQ) / | 2GR 90 G e
QﬁdR: [W—GQ] dR since W: ﬁ—FQ@:GQ —|—Q£
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8(GQ) is the rate of ‘convection’ of rotational energy through the
OR dR gas by the torques

if integrated over the whole disc

[(;g”inner edge

outer edge

_GQ/ dR local rate of loss of mechanical energy by the gas
—> it goes into internal (heat) energy

The viscous torques cause viscous dissipation within the gas at the rate
reported above per ring of width dR
—> This energy will be irradiated by the upper and lower faces of the disc
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Rate of viscous dissipation per unit plane surface area
GQdR G (2rRXvR*QHQY 1
4drR dR 47R 4R 2 /( )

|

2 plane faces (2 X 2MRdR)

D(R)

Angular velocity has the Keplerian form

1/2
0 = <CZ_]\34) = ' = (3/2) (GM)"/?R™5/?
9 GM
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Magnitude of viscosity

It can be shown that the shear viscosity gives a force density term in the ®
direction which is dimensionally identical to the bulk viscous force density

visc,shear ™ AU
Juise,sh pPAV =

Compare this term with the inertia terms in the Euler equation

v: velocity field (flow speed); pv - Vv=convection of momentum

p(av/at _|_ (U ) V)U) through the fluid by velocity gradients

) . 2
v/ R
nertia gb/ RU¢ [laminar vs. turbulent flows ‘discriminator’]

~U p—
viscous  \ovg/R2? @
0 / ™~ kinematic viscosity

Reynolds number. measures the importance of viscosity
R.<<1: viscous forces dominate the flow; R,>>1: the viscosity associated
with the given A and U is dynamically not important - the fluid is in a
turbulent regime where a new type of viscosity ‘replaces’ (i.e., is much
higher than) the molecular one (but it is challenging to properly treat)

R =
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Shakura & Sunyaev 1973 solution

‘Prescriptions’:

« The typical size of the largest turbulent components (‘eddies) cannot
exceed the disk thickness H (A, ,<H)

* ltis unlikely that v, is supersonic (i.e., higher than the sound speed Cg in
that medium)

v = oacsH

a is expected to be <1 (a-prescription), maybe not constant all over the disc
— useful ‘parameterization’ of our very limited knowledge of the disc and its
properties and processes
-> semi-empirical approach to the viscosity problem
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Radial disc structure

1/2
0O = QK(R) — (GM) / Keplerian angular velocity

Vp = RO 5 (R) Circular velocity

The gas is supposed to have also a small radial ‘drift’ velocity vg, which is
negative close to the central object (hence matter can be accreted).
In general, vg=vg(R,1)

The disc is characterized by a surface density 2(R,t), given by the
integration of the density o along the z direction (perpendicular to the plane
of the disc)

—> Conservation equations for the mass and angular momentum transport
in the disc due to radial drift motions
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Radial disc structure

Between radii R and R+AR
27'(' RARZ Total mass

27‘(‘RARZR2 ()  Total angular momentum = mvR
\ J\_
! Y

mass vxR=(QR) xR

Rate of change of both quantities <- net flow from neighbouring annuli (R and R+AR)
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Radial disc structure

Mass conservation (R, R+AR ‘boundaries’)

2 at |§+AR VR aft R+AR
0
o, (2TRARY) = 2rRS(R, t)vn(R,t) — 2m(R + AR)S(R + AR, ivp(R + AR, t) ~
| ] | ]

AR mass rate at R mass rate at R+AR

_ 0
At R ~ —21AR— (RXvR)

OR

At a given (‘fixed’) \ }
radius (annulus), R Y
does not show time

variations

variations of (R2VR)
between R and R+AR

o [
_ _ — 1
AR = 0= R— |+ == (REug) = 0 (1)

— indicates temporal variations of the mass due to the net flow of mass through two neighbouring annuli
ot (representing the ‘boundaries’ of the present calculation)
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Radial disc structure

Angular momentum conservation
(including the transport due to net effects of the viscous torque G(R,1))

G(R + dR) — G(R) = g—gd}% \
5 in the annuli R | in the annuli R+AR |
I |

a(?WRARZRQQ) = QWRZ(R, t)vR(R, t)RQQ(R) — 27T(R + AR)E(R + AR, t)vR(R + %R, t) X

x (R4+ AR)*Q(R + AR) + g—gAR ~
0 oG
~ 2rAR—(RY 20) —A

i R@R(R vrR 3—:_8}2 fi’

J < B, 2] [T ‘/2
AR = 0= R=(SR*Q) + o (RYvr R°Q) = %22 (2)

2 indicates temporal variations of the angular momentum due to the net flow of a.m. through two
ot neighbouring annuli
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Radial disc structure
G(r) = 2rRYvR*QY (3

Using (1), (2) and (3) and assuming 0€2/0t = 0 (valid for orbits in a fixed gravitational potential)

(‘92 8
o d , 1 8G
— — 2
R(,%(ER Q) + aR(RZUTR Q) = 5~ 97 (2)
( assumption 9Q/ dt=0
o0 0 0 1 0G
OR>— OR? > > 20)= ——
iy +R£+ 1 g BEvr) + BEvr g (FF0) = 505
RO 0 1 0G
QR? + QR? )y )y 20) = — =
R (,% R aR(R ”L)R)—l—R ?)R(R ) or OR

RO, / 1 0G

Based on (1) — REUR(RQQ)/ — Qig—g
T
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Radial disc structure

Combining (1) and (4) to ‘remove’ vg dependence

) 0 3, 1 9G]
Bor = ~ar'F*"R) = ~5R |anmza) oR
LO0s_ 1o 1 oG]
ot  ROR |27(R2Q)|0R

1 1

2r(R2Q) 212 (R2Q)
1
272 (R2(GM)Y/2 | R3/2)
1
- 2n 2 (RY2(GM)Y/?)
1 R1/2

T(R-2(GM)/2) — n(GM)L/?

e

(@)

(b)

;) 3 1/2 p—5/2
= S (GM

O = (GM)'/*R
oG 0 oo
5 = op 2TRVSRY) =
9 3 9 —5/2 1/2y _
55 TRV RO (GM)?) =
%(SWRV%E(GM)VQ) =
37T(GM)1/2i(VER1/2)

oR
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Radial disc structure

combining (a) and (b) 1 8G R1/2 1 8
—_— = 3r(GM)Y2—(vER'?) =
QW(RQQ)’ OR W(GM)l/Q 7T( ) aR(V )
= 3R'/? aiz(”ERl/ ?)
For Keplerian orbits and using G(R)
82 3 0 O Basic equation governing the time
{R1/2 (yZRl/Z)} evolution of surface density in a
8?5 R aR (9R Keplerial disc.
oy 10G 1 9G 1 = v (viscosity) can be a function of 2, R
REvR(BQ) = 5058 = R= 2 5k By(RES) and ¢
1 0 1
= —31(GM)Y?— (vZR'Y?) _
o ; a]z RZ%(RU?GM )"?) | Radial velocity
_ v 1/2 1/2 .
= M) R W R S G 2R 2y
3 0 1/2
= SRz V)
3 o,
VR ( S RY/ 2) Following G(R) and (4)

Y R/29R
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Radial disc structure and timescales

Viscous (or radial drift) timescale: timescale in which matter diffuses through
the disc over a distance R under the effect of viscous torques.
2 changes on t .. timescale

tvisc ~ R2/V )

39
SR1/2 OR

y - Lvise ™ R/UR
(VERl/z) ~ E

VR —

Dynamical timescale: corresponds to the orbital timescale

Keplerian velocity



Hydrostatic equilibrium application to the disc

Consider the z-(vertical) direction in the structure of the disc, where essentially there is
no flow — Euler equation, with all velocity terms neglected

LP_ 0, _GM . GM:
p Oz 0z (R2422)1/27 (R2 4 22)3/2

1 0P GMz
thin-disc approx. z << R —_— —— = —

p 0z R3
If the typical scale 8P P H P 2 GMH2
eight of the disc in —_—~ — ~ —_— == p—
rt]hegstdiretction is H 82 H ? < — p CS R3
Verti_(;a{_con}gonenzl\c/l)f the ﬁp 02 — GM ( H ) 2 — U2 ( E ) 2
the dominant term) R S R R K R
H Cs H
cs = vk () == = ()
. CS
From F. Melia H << R % - << 1
VK

The geometric thin disc approximation requires that the local Keplerian velocity should
be highly supersonic (maybe not satisfied throughout the whole disc)
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Radial disc structure and timescales

VK — 7 tdyn = — = — = lyisc = —] _(E) tdyn

Thermal timescale: characteristic timescale needed for a system to
recover thermal equilibrium

thermal energy content (kpT/umy) per unit surface area

1
- Jes, N D _ cs R? _
D(R) YvGM/R3 i v

l

viscous dissipation rate

H
= tvisc
I )

tayyn~ o ty, ~ o (H/R)? t,;5c = dynamical < thermal < viscous timescales
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Steady thin disc

Changes in the radial structure of the disc occur on viscous timescale. In many systems,
external conditions (e.g., mass transfer rate) change on t>t,s.. In this case, a stable disc

will settle to a steady-state structure (9/9t=0 in the conservation of mass and angular
momentum formulae, (1) and (2))

% REUR) =0 — RXvp = cons

This represents the constant inflow of mass through each point of the disc (because it is
the integral of the mass conservation equation)

M = QWRZ(—”UR) Mass accretion rate
(Z)R Q) + 0 — (RXv, R*Q) = L 9G _ pyverza= & + <
OR or or OR " 27 2m

where C=constant
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Steady thin disc

G = 2r RS R*QY Q' =dQ/dR
2 S R2¢Q)
Ry R2Q — TR O
27T 27T
C

/
—vYQ = X(—v,)Q +
27‘-}13/2
C is related to the rate at which the angular

momentum flows into the compact object or to
the couple exerted by the compact object on the
inner edge of the disc

Consider the compact object being a star (* ) and the disc extending down to its
surface. To prevent disruption, the star must rotate more slowly than the break-up
speed at its equator

The angular velocity of the disc material remains Keplerian
Q* < QK (R*) and increases inwards, until it begins decreasing to Q4 in a
sort of boundary layer of radial extent b
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Steady thin disc

There exists a radius R=R «+b at which Q'=dQ /dR=0

GM
Q(R* -+ b) — ( 73 )1/2[1 + O(b/R*)] Q is very close to its Keplerian value
*
In practice, b<<R, and thus Q is very close to its Keplerian value at the point where

2'=0
If b~R 4, the thin-disc approximation breaks down at R=R «+b (we are not anymore in
the condition of a ‘boundary layer’ but a sort of thick disc)

At R=Rx+b Q at R, +b

C
0=3(—v.)Q+ 73

~ 2T RIS, Q(R, + b)

» C = 2m(Ry + b)°X0,.Q(R, +b) ~

M = 2nR¥(—v,)

= C =—-M(GMR,)"?
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Steady thin disc

— Y0 =Yu,Q+

2R3

—yzg(GM)l/QR—f’/? — Yo, (GM)Y2R3/% 4 2%(GM)1/2R,1/ *R3
T
—§VE = Yvu.R+ %RimR—l/2
2 21

2 M R
Y =—Z[Yu,R+ —(=2)1/2
v g Zvr R+ ()]
M = 27 RY(—vg)

M R
vE =g 1= (5)"]
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Steady thin disc

D(R) — Yy, — viscous dissipation per unit disc face area

9 M R, GM 3GMM R,
D(R) = __[1_(§)1/2]F = 13 [1—(5)1/2]

The energy flux through the faces of a steady thin disc is independent on the v (viscosity).
Such independence relies on the fact that we adopted conservation laws to ‘remove’ the v
term, BUT the other disc properties (2, v,) do depend on v

3GM M R, 172

= DR) = = 1= (R



Geometrically thin discs. XXIV

Steady thin disc

Luminosity produced by the disc in the annulus (R4, R,)

2 faces of the disc

R ) R

\ s SGMM [ R, .1

L(R1,Ry) =2 D(R)2nRdR = [1— (=Y —dR
R 2 R R R?

SGMM 1 2 R,

L(R1,R2) = 1— = 1/21 _ =11 _ Z(2\1/2
(1, Re) = 25 1= S0 = 1= S0
MM _ 11
ile:R*aR.Z_)OOdeiSCZSGQ {R*g—()}
GMM 1
i1sc — :_Lacc
L OR, 2
GMM 1
Ldisc: QR* :g acc

The matter dissipates half of its potential energy in falling from infinity to radius R
—> source of luminosity of the disc
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Steady thin disc

3GM M R, 1 /2] Another way to “interpret’

D (R) = ST R3 [1 — ( R ) the dissipation rate

Total rate at which energy is dissipated in a ring of internal radius R and external radius R+dR

MM .
2 x 2nR dR D(R) = giR 1 — (R—)W] dR

R

\ }

' MM
GMM dR Y G [1—§(R—)1/2]d}2
2 R2 R2 2\ R

Rate of release of gravitational binding <:! l

energy between R+dR and R

Net flow of energy into the annulus dR
associated with the transport of angular
momentum outwards (i.e., work done by the
local torque on the exterior disc)

At any radius, the energy dissipation rate consists of the release of gravitational binding energy +
energy loss due to angular momentum transport (outwards)
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Steady thin disc

For R>> R, this viscous transport of energy liberated lower down in the potential

well is twice as important as the local binding energy loss [ s

—> The viscous transport has a key role in redistributing the energy release within the
disc, but the total rate cannot change (i.e., it is preserved)

‘GENERAL’ FORM

dE 3SGMM R,

LdR=—(—) dR = ———[1-B(—

)1/2] dR

* Rin=Risco
* [3<1: depends on whether the accretion fow within the ISCO has significant magnetic content to
connect it to the disc flow further out (Krolik 1999)
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Steady thin disc
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Steady thin disc, radial velocity

We have seen that in case of thin-disc condition, the circular matter velocity vq will be very
close to the Keplerian velocity vk

M B
VS = [ (S
M M _ 3 Reue
BT TorRY QWR%H (%)1/2]_ 2R[ (R) |
R1% R, _
or = — o[l - ()
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Steady thin disc, radial velocity

% H
VR ~ E = (& Cg E << Ccg Vv = acgH SS73 ‘prescription’

The shear viscosity leads to an inexorable transfer of angular momentum outwards
and a diffusion of mass inwards
The dominant velocity at any given radius is always the orbital one

M=Mach number = vg/Cg

GM
vo ~ ()P 2w
CS H CS R
VK R_> (%) M
a Cg

VR

M
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The emitted spectrum

If the disc is optically thick, each element of the disc face radiates roughly as a
blackbody with temperature T(R)

o TH(R) = D(R) = *C 1 - (B2
5 T(R) = (g [~ ()24

3GMM)1/4(£)—3/4

R R, T =
> - ( 8TR30 R,

More energy is dissipated close to the BH than far from it, i.e., more energy per unit
area - regions close to the BH are hotter (Tgg increases at small radii)

3SGMM R,
1 — in\1/2171/4 —3/4
S 8o 1-(—=)""}/" xR

commonly used formula T'(R) = { -
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The emitted spectrum

1, =B, [T(R)] — hu JRT(R) 1 [erg/cm?/s/Hz/sr]

The atmosphere of the disc (i.e., the part of the disc at optical depths 11 to infinity)
is neglected in the redistribution of the radiation over frequency

D: distance of the observer
i: angle between the line-of-sight and the normal to the disc plane

A ring of radii R, R+dR subtends a solid angle 21 RdR cos(i)/D?

Imcosi [Towt Amhcosi v° Rou R dR
Fy: /* IVRdR: L* ehl//kT(R)_l

D? c2 D2

No dependence on viscosity
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The emitted spectrum

This is a valid solution for all sources in accretion having an optically thick accretion disc.
For non-magnetic white dwarf and neutron stars, R;,=R «; for a magnetic white dwarf, it
can be demonstrated that R,=magnetospheric radius. For BHs, Ri,;=Rin (ISCO, ...)

At intermediate frequencies: the upper boundary hv hy R 3/4 1/3 0 5135/3 1/3
of the integral is hv/KT(Rou)>>1, while the lower |l = ~ (=)"* = F, xv dr x v
boundary is hv/kT(R )<<1 kT(R) kT, R, g €e*—1

2 T

1 | 3 3 1 1 1
Steady disc optically thick
accretion radiating locally

log Fy (arbitrary units)
log ! on (arbitrary units)

log (hv/AT,y) T,.=T(R..) log, o (hv/KTy,,)
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The emitted spectrum

Accretion disks

Including the X-ray emission 2 URRLLL Iy B
due to the hot corona (T~108 K) VR

1000

thin disk
100

hot corona

Rl L.
Serae
“nllnum.o.clo...nl.
ST,

| 1 10 100 1000 10000 10°
Energy (eV) From H. Netzer
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The outer boundary of the disc

What about R,;? — see the lesson on torus and obscured AGN

Rout~self-gravity radius which is the location where the local gravity exceeds the
vertical component of the central BH gravity and the disc becomes unstable

_2 L
Rsc ~ 1680 M, Pas[=AN 151 L 1-8 R,
Lgaq ' 0.1

M9=MBH/1 0° M@

a=viscosity parameter

n=radiation efficiency

> Rgs~0.04pc in case of Lagn/Leag~0.1, 108 Mg BH

The disc starts fragmentation into clouds moving in the same general plane beyond Rgg



Geometrically thin discs. XXXV

The local structure of thin discs

In the thin-disc approximation, at a given radius both the pressure and the temperature gradients
are essentially vertical (the radial and vertical structures are largely decoupled).

Hydrostati librium 120 = _GM= id
ydrostatic equilibrium 5~ = ——;—  provides

p(R,z) = pe(R) e /2

density of the central disc plane z=0 (z=vertical direction)

)0 o / Tc (central T) relies on an energy equation relating

H . R the energy flux in the vertical direction (e.g.,
- Cs / U¢ radiative transport) to the rate of generation of
2
cg=P/p

energy by viscous dissipation

Stefan-Boltzmann constant

/

40' Assumption: T(R,z)~T¢(R)=T(R,0)
4

C

P:/C,OTC |
Qwmp 3C

Gas pressure Radiation
pressure
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The local structure of thin discs

Consider radiative transport + disc medium assumed as ‘plane-parallel’ at each radius (so that the
temperature gradient is effectively in the z-direction).
The flux of radiant energy at the surface z=constant is

—16 ¢ T3 0T
F(z) —
(2) 3krp Oz
\

Rosseland mean opacity
optical depth

|
T = IOHk’R(p, Tc) = Ek’R >> ] It is implicitly assumed that the medium is optically thick

Energy balance: radiated flux = volume rate of energy production by viscous dissipation Q*

8 _ ot 5 Fay / Q*(2)d= = D(R)

0z
surface temperature

F(z) ~ (40/37) T*(2)
If TH >>T*H) — (40/37) TS = D(R)



Geometrically thin discs. XXXVII

The local structure of thin discs — summarizing equations

1| p= %

2| H = (c;ﬁf;j;jm

3] ¢ = %

4] P = tele 4 doTd

ump &

o AgTA -
5] 252 = S - ()

6] 7 = Skr(p, Te) = 7(S, p, Te)

7] v5 = L1 - (%))

8l v=v(p,Tc, %, a,...)

Solving these equations provide the derivation of the radial drift velocity
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What about the other ‘flavours’ of discs?




Radiation inefficient accretion flows:

Advection-Dominated Accretion Flows (ADAF). |

So far we have discussed thin-disc solutions, where all of the gravitational binding energy is
radiated away

There are cases where the radiation efficiency of the accretion flow is insufficient to emit all the Eg,,
liberated in the disc, i.e., the radiation transfer rate in the accreted matter is insufficient to carry all
the energy to the surface of the flow where it can be radiated - part of the energy is then advected
with the flow (which is therefore adiabatic), instead of being radiated from, and the accretion flow
ultimately is accreted beyond the horizon (in BHs).

The flow retains most of its energy and does not radiate/cool efficiently

— ADAF solutions (inefficient-disc solutions - lower luminosities than geometrically thin, optically
thick Shakura-Sunyaev discs) — also called RIAF (Radiatively Inefficient Accretion Flows).

Often mentioned (with some differences) as ADIOS (ADiabatic Inflow-Outflow Solutions), CDAF
(Convection-Dominated Accretion Flow), ...

Treatment as in High Energy Astrophysics (Courvoisier) and
The Physics and Evolution of Active Galactic Nuclei (Netzer)




ADAF solutions. I

Accretion discs with very low accretion rates may have much lower densities than in SS73 discs.
Since cooling is generally prop. to N2, cooling is much less efficient, and the particles retain the
dissipated gravitational energy for a longer time - particle temperatures can rise to the virial

temperature
1
§m’U2 — 3]‘€T
2 GMm
R
I mu? _ GMm
6k 6kR
r = R ___R 2 12
T Rs  2GM/ _ mpce” 10
T, = ~ K lons
_— = 2 — 2 9
6krRs  Gkr2GM/c? — 12kr 7 = e 107 electrons

12kr ~ r

Coulomb collisions between ions and electrons in low-density gas are slower and less efficient in
sharing the total kinetic energy
In ADAF, most of the E,, locally deposited in the disc by viscous processes is stored as internal
energy of the ions (because of their larger mass and because the electrons are more efficient
COOIantS) 2 Tions>>TeIectrons
The gas temperature close to the BH may reach very high values (T, if density is low and
Coulomb interaction is inefficient)



ADAF solutions. Il

Magnetic fields can be present:

B / in such cases, Epo=Ein*Emagn

a

From Netzer

Low density, inefficient cooling in the
innermost region. The gas does not
cool and reach very high T -
increase in the thickness of the disc
(the disc “inflates”)

Inefficient conversion of gravitational to radiated electromagnetic energy because most of this is
advected (‘lost’ in the BH) - low resulting luminosities
The accretion rate may not necessarily be very low: they can be extended and be characterized
by a standard accretion disc in the outer regions (thus a dramatic change in the disc structure ___
should be present) - two-temperature disc




ADAF solutions. |V

Radial flux of particles through
the disc

Number of particles passing through a disc element per unit time nuv dO'

< |\

Surface number density

Area of the disc element
Radial velocity v(r)

Change of internal energy per ion (in absence of mechanical work, du = T dS
Thermodynamics’ first law) 1
Entropy

da’U d aav _
Gladv _ pn &5 . AUad :anEZQﬂL_Q

dr dr ’/dt dr / \

Total i :
acrc;)stz rlr;)teerrrlljilitetrilrig;grt]:jagjel;nit Egrav transferred to the plasma by Energy radiated by the plasma
surface viscous processes (D(R)) by all processes




ADAF solutions. V

3GMM
+ _ _
@7 = D(R) = 8T R3

|

Locally dissipated energy per
unit surface

[1 _ (& ) 1/2] for a Keplerian disc

R

In case of SS73 (radiative efficient) discs, Q" = Q™ (hence no net increase of internal energy
locally)

In ADAF, Q* >> Q7, and the mean T,sma increases inward faster than in the previous (SS73)
case. Almost all viscous energy is stored in the gas and deposited into the BH, i.e., an element
of the gas is unable to radiate its thermal energy in less time than it takes to be transported
through the disc onto the BH.

Cooling<<heating. For a given accretion rate, L(ADAF)<<L(cooling-dominated flow)

These are Optically thin (2-T) ADAF solutions with a very low, sub-Eddington
accretion rate

There are also Optically thick ADAF solutions: objects are accreting at super-
Eddington rate but radiate less than the standard disc (most of the radiation is
trapped inside the disc and is carried toward the central object) — slim discs




ADAF solutions. VI

M > M' . The system is well described by a i
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Ri=transition radius between the hot flow and the thin disc

For details, see Yuan & Narayan et al. (2014, ARA&A)



ADAF solutions. VI
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ADAF solutions. VIII

Bremsstrahlung,
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