AGN: Classification and Unification Model

Powering AGN

- (1) A compact central source provides a very intense gravitational field. For active galaxies, the black hole has M_{BH} = 10⁶ - 10⁹ M_{sun}
- (2) Infalling gas forms an accretion disk around the black hole.
- (3) As the gas spirals inward, friction heats it to extremely high temperatures; emission from the accretion disk at different radii (T > 10⁴ K) accounts for optical through soft X-ray continuum.

(4) Some of the gas is driven out into jets, focused by magnetic fields.

AGN global properties

- Active Galactic Nuclei (AGN) are powerful sources of radiation which exist in the centre of ≈1-10% of all galaxies (linked to duty cycle)
- Galaxies which host an AGN are known as active galaxies
- The span of observed AGN bolometric luminosities is huge, L≈10⁴⁰–10⁴⁸ erg/s
- AGN are not always active (duty cycle)
- Large variety of properties \rightarrow sub-classes
- Broad-band continuum and wide range in emission-line ionization
- Variability on short timescale \rightarrow inner regions of the AGN implied
- The most luminous AGN outshine their host galaxies by factors >1000
- AGN are the most luminous long-lived objects in the Universe

AGN as broad-band emitters

The vF $_v$ vs. Energy (frequency) representation [erg/s] allows to see where most of the AGN radiation is emitted

Schematic depiction of AGN SED

Radio-loud (jetted-) AGN widely discussed in another lesson of the course

AGN taxonomy: the AGN zoo

AGN classification: RQ vs. RL

More complete AGN taxonomy

3-dimensional classification: spectral type, radio properties, and AGN luminosity (still open issues)

Name	Spectral Type?	Radio Loud?	Luminosity?
Seyferts	1, 1.2, 1.5, 1.8, 1.9, 2.0	No	Moderate
Quasars	1, 2	No	High
LINERS	1, 2	Yes and No	Low
Broad-line Radio Galaxies (BLRGs)	1	Yes	Moderate
Narrow-line Radio Galaxies (NLRGs)	2	Yes	Moderate
Radio-loud quasars	1, 2	Yes	High
FRIs	1	Yes	Low
FRIIs	1, 2	Yes	Low-High
Blazars	0!!!	Yes	Low-High

Class/Acronym	Meaning	Main properties/reference	
Quasar	Quasi-stellar radio source (originally)	Radio detection no longer required	
Sey1	Seyfert 1	$FWHM \gtrsim 1,000 \text{ km s}^{-1}$	
Sey2	Seyfert 2	$FWHM \lesssim 1,000 \text{ km s}^{-1}$	
QSO	Quasi-stellar object	Quasar-like, non-radio source	
QSO2	Quasi-stellar object 2	High power Sey2	
RQ AGN	Radio-quiet AGN	see ref. 1	
RL AGN	Radio-loud AGN	see ref. 1	main
Jetted AGN		with strong relativistic jets; see ref. 1	
Non-jetted AGN		without strong relativistic jets; see ref. 1	
Type 1		Sey1 and quasars	
Type 2		Sey2 and QSO2	
FR I	Fanaroff-Riley class I radio source	radio core-brightened (ref. 2)	
FR II	Fanaroff-Riley class II radio source	radio edge-brightened (ref. 2)	
BL Lac	BL Lacertae object	see ref. 3	
Blazar	BL Lac and quasar	BL Lacs and FSRQs	
BAL	Broad absorption line (quasar)	ref. 4	
BLO	Broad-line object	$FWHM \gtrsim 1,000 \text{ km s}^{-1}$	
BLAGN	Broad-line AGN	FWHM $\geq 1,000 \text{ km s}^{-1}$	
BLRG	Broad-line radio galaxy	RL Sey1	
CDQ	Core-dominated quasar	RL AGN, $f_{core} \ge f_{ext}$ (same as FSRQ)	
CSS	Compact steep spectrum radio source	core dominated, $\alpha_r > 0.5$	
CT	Compton-thick	$N_{\rm H} \ge 1.5 \times 10^{24} {\rm ~cm^{-2}}$	
FR 0	Fanaroff-Riley class 0 radio source	ref. 5	
FSRQ	Flat-spectrum radio quasar	RL AGN, $\alpha_r \leq 0.5$	
GPS	Gigahertz-peaked radio source	see ref. 6	
HBL/HSP	High-energy cutoff BL Lac/blazar	$v_{\text{synch peak}} \ge 10^{15} \text{ Hz} \text{ (ref. 7)}$	
HEG	High-excitation galaxy	ref. 8	
HPQ	High polarization quasar	$P_{\text{opt}} \ge 3\%$ (same as FSRQ)	
Jet-mode		$L_{\rm kin} \gg L_{\rm rad}$ (same as LERG); see ref. 9	
IBL/ISP	Intermediate-energy cutoff BL Lac/blazar	$10^{14} \le v_{\text{synch peak}} \le 10^{15} \text{ Hz} \text{ (ref. 7)}$	
LINER	Low-ionization nuclear emission-line regions	see ref. 9	additional
LLAGN	Low-luminosity AGN	see ref. 10	adultional
LBL/LSP	Low-energy cutoff BL Lac/blazar	$v_{\text{synch peak}} < 10^{14} \text{ Hz} (\text{ref. 7})$	
LDQ	Lobe-dominated quasar	RL AGN, $f_{core} < f_{ext}$	'sub-classes'
LEG	Low-excitation galaxy	ref. 8	
LPQ	Low polarization quasar	$P_{\rm opt} < 3\%$	
NLAGN	Narrow-line AGN	$FWHM \lesssim 1,000 \text{ km s}^{-1}$	
NLRG	Narrow-line radio galaxy	RL Sey2	
NLS1	Narrow-line Seyfert 1	ref. 11	
OVV	Optically violently variable (quasar)	(same as FSRQ)	
Population A		ref. 12	
Population B		ref. 12	
Radiative-mode		Seyferts and quasars; see ref. 9	
RBL	Radio-selected BL Lac	BL Lac selected in the radio band	
Sey1.5	Seyfert 1.5	ref. 13	
Sey1.8	Seytert 1.8	ref. 13	
Sey1.9	Seytert 1.9	ref. 13	
SSRQ	Steep-spectrum radio quasar	KL AGN, $\alpha_r > 0.5$	
USS	Ultra-steep spectrum source	KL AGN, $\alpha_r > 1.0$	
XBL	X-ray-selected BL Lac	BL Lac selected in the X-ray band	
XBONG	X-ray bright optically normal galaxy	AGN only in the X-ray band/weak lined AGN	

 Table 1
 The AGN zoo: list of AGN classes

Padovani et al. (2017)

A recent definition: jetted vs. non-jetted AGN

[see Padovani+2017 review on AGN]

RADIO-LOUD AGN: emission dominated by non-thermal processes (jet-related) RADIO-QUIET AGN: multi-band emission dominated by thermal processes (and radio emission can be related to star formation – see studies in the CDF-S, Bonzini et al. 2013)

≻Type 1 AGN:

- broad optical/UV permitted emission lines (FWHM~1500-15000 km/s)
- narrow (FWHM~500-1000 km/s) forbidden lines
- Width due to rotational motion around the BH → BH mass
- n≈10⁹⁻¹⁰ cm⁻³ (photo-ionized clouds with small volume filling factor)
- Collisional de-excitation dominates over forbidden line emission

Type 2 AGN:

- FWHM permitted and forbidden lines almost the same
- The forbidden lines, while narrower than the permitted ones, are usually broader than the emission lines in most starburst galaxies
- n≈10³⁻⁵ cm⁻³ (lower density allows forbidden transitions, otherwise electron, while moving to a lower state, would pass its energy to the e⁻/atom responsible for the collision, hence no energy radiated)

Seyfert galaxies

Classification (Type 1, Type 2) valid for most AGN and vastly related to Unification Scheme

Intermediate-type Seyfert galaxies

References: Osterbrock (1977, 1981; Winkler 1992)

Type 1.9

Type 1.9: broad component visible in H α but not in H β

Type 1.5: F(Hβ)/F[OIII]=0.33-2.0

Seyfert 2 galaxies (narrow-line AGN)

 Seyfert galaxies can be differentiated from normal emission-line galaxies through the flux ratios of certain narrow emission lines (only narrow-line components are considered)

• The shape of the underlying ionizing source determines how many photons are available to produce particular emission lines

Kewley et al. (2006) – red line shows extreme starburst, dashed line is classification line

- Higher luminosity "cousins" of Seyfert galaxies
- Thanks to X-ray surveys, also the narrow-line counterparts of local Sey
 2 galaxies (Type 2 quasars) have been detected and studied over the last decade
- Hosts are typically elliptical galaxies

RADIO-LOUD QUASARS: similar optical properties but strong radio

Broad-absorption line quasars (BALQSOs)

Normal quasars viewed at angle along the l.o.s. of intervening, fast-moving material (radiatively-driven wind from the accretion disc?)
 → Winds providing feedback on the environment surrounding the AGN?

- High-ionization (HIBAL): Ly α , NV, SiIV, CIV
- Low-ionization (LOBAL): AIIII, MgII

Velocity outflows of thousands km/s up to ≈50,000 km/s

Radio galaxies: classification basef on radio power and morphology

• Fanaroff & Riley (1974) – FR I

Expanded discussion on RGs later in the course

- Less luminous, 2-sided jets dominate over radio lobes
- FR II
 - More luminous, edge-brightened radio lobes dominated over 1-sided jet (Doppler boosting of approaching jet and de-boosting of receding jet)
 - Efficient to transport energy up to the hot spots, where shocks are produced by the relativistic jet,

Ratio of the separation of the highest surface brightness regions on opposite sides of the central galaxy and the extent of the source measured from the lowest surface brightness contour (sort of "contrast" parameter): R<0.5: FRI R>0.5: FRI

"Dividing line" L[178 MHz]≈10²⁵ W/Hz/ster (FR1974)

Environment and mergers have a role in shaping radio galaxies

Extension well beyond the size of the galaxy

Radio galaxies: the new class of FR0

Compact radio galaxies (<10kpc), often unresolved at JVLA resolutions down to ~0.3" (Baldi et al. 2015, 1018; see also Ghisellini and Capetti works).

[1] The ratio between the core and total emission in FR0s is \sim 30 times higher than that in FRIs.

[2] FR0s have the same properties as FRIs from the nuclear and host points of view. FR0s differ from FRIs only in the paucity of extended radio emission

Possible physical explanations

(1) Young radio galaxies?
(2) A variation of accretion or jet launching prevents the formation of large-scale radio structures
(3) Mildly relativistic jets?

Baldi et al. (2018)

Radio galaxies: flat and steep spectrum sources

$S_ u \propto u^{-lpha}$

- $lpha \geq 0.5$ Steep spectrum sources ~ extended sources
- lpha < 0.5 Flat spectrum sources ~ compact sources (CSS, GPS)

Blazars = BL LACs + FSRQs (see following slides) are flat-spectrum radio sources (i.e., jet oriented at θ <15 deg wrt. the line of sight) FSRQs have also strong and broad emission lines, while BL LACs have weak emission lines, absorption lines from their host galaxy, often featureless This LEG/HEG definition applies also to radio-quiet AGN (e.g., Seyfert galaxies are HEGs, LINERs and low-luminosity AGN are LEGs)

Radio galaxies: low- and high-excitation RGs

ADAF

LERGs

Redder spectrum, higher Mstar, and stronger D4000 break Fuelled by the hot gas IGM phase?

HERGs

Fuelled by the cold gas IGM phase?

CLASSIC SS DISK

L/L_{Edd}-0.01 may be the "switch" value for accretion

Blazars

• Sources of high-energy emission (up to TeV), luminous over the entire electromagnetic spectrum

• Hosts are typically giant elliptical galaxies

BL LACs: flat and usually featureless (EW<5Å) optical spectrum

Highly polarized, strong and fast variability

OVVs: optical spectrum with features

Even stronger variability than BL Lacs, but lower polarization

Radio galaxies: optical spec. classification

- Broad Line Radio Galaxies:
 - Emission line widths similar to those in a Seyfert Type 1
- Narrow Line Radio Galaxies:
 - Emission line widths similar to those in a Seyfert Type 2

LINERs

- Sources characterized by narrow, low-ionization emission lines
- Weak non-thermal continuum
- Emission due to either AGN (of low luminosity) or shocks/winds from a starburst
- Hosts are typically spirals

LINER: [OIII]/Hβ less prominent than in Sey 2 Strong [OI]6300Å and [NII]6548,6583Å

Host galaxy may contribute significantly in the optical band in both

[see Padovani+2017 review on AGN]

AGN Unification

After numerous attempts to provide a unification model for the RLAGN population...

A milestone in AGN unification. I

<u>A classical Sey 2 galaxy (NGC1068) observed in polarized light showed a Sy1-like polarized</u> <u>spectrum</u>, a featureless continuum with high polarization and position angle perpendicular to the radio jet. The observed properties could be explained by reflection of an hidden BLR into the line of sight, the scattering source being composed of hot electrons rather than dust grains.

THE ASTROPHYSICAL JOURNAL, 297:621-632, 1985 October 15 © 1985. The American Astronomical Society. All rights reserved. Printed in U.S.A.

SPECTROPOLARIMETRY AND THE NATURE OF NGC 1068

R. R. J. ANTONUCCI National Radio Astronomy Observatory,¹ Charlottesville AND J. S. MILLER Lick Observatory Received 1985 February 1; accepted 1985 April 17

ABSTRACT

Extensive high-resolution, high signal-to-noise ratio polarization spectra of the nucleus of NGC 1068 are presented. The nonstellar continuum is polarized ~16%, independent of wavelength. We have discovered broad Balmer lines and Fe II emission, with polarization $\gtrsim 15\%$ at approximately the same position angle as that of the continuum. The polarized flux spectrum closely resembles the flux spectrum of Seyfert type 1 nuclei. We conclude that the continuum and broad-line polarization is due to scattering, probably by free electrons. For NGC 1068, as well as apparently for all other Seyfert 2 galaxies, the optical polarization position angle is perpendicular to the nuclear symmetry axis as determined by the radio morphology. We suggest that the continuum and broad-line emission regions are located inside an optically and geometrically thick disk. Continuum and broad-line photons are scattered into the line of sight by free electrons above and below the disk. The narrow-line region and the thermally emitting nuclear dust clouds have a more direct view of the continuum source, explaining why they seem too strong to be powered by the observed continuum.

The narrow lines seen in the flux spectrum all have similar low polarizations, including the narrow Balmer lines. There is no evidence that the narrow Balmer lines and the [O III] lines come from qualitatively different regions, despite earlier suggestions to the contrary. Both P and θ vary with wavelength within the profile of the [O III] 25007 emission line. Therefore, the velocity field in the spatially unresolved narrow-line region is organized and not chaotic. The polarization variations may mean that the spatially resolved velocity field, reported by Walker in 1968, indicating expansion of narrow-line clouds in the plane of the host galaxy, extends into the unresolved region.

Subject headings: galaxies: individual - galaxies: nuclei - galaxies: Seyfert - polarization

A milestone in AGN unification. II

Hidden Type 1 AGNs in Type 2 AGN (but not in all)

- → Spectropolarimetry revealing Type 1 AGN in at least some Type 2 AGNs
- → Polarised emission is scattered light that is hidden from direct view

Antonucci & Miller 1985; Antonucci 1993, ARA&A

AGN taxonomy/classification

Unification scheme for radio-loud (jetted) AGN (top part of the cartoon)

Remember: only a limited fraction of AGN (~10%) has jets

Unification scheme for radio-quiet (not-jetted) AGN (bottom part of the cartoon)

adapted from Urry & Padovani 1995

A logarithmic view of an AGN

Courtesy of A. Merloni, ESO graphics, 2010

AGN Spectral Energy Distribution

The AGN phenomenon along different lines of sights

Beckmann & Shrader (2012) Graphic by Marie-Luise Menzel (i.e., what it intercepts) that primarily makes the difference in AGN types (broadly, Type 1 vs. Type 2 AGN)

The AGN phenomenon along different lines of sights

Main AGN Classifications

Radio quiet		Radio loud
Radio quiet quasar (RQQ) Broad absorption line (BAL)	 De 1	Radio loud quasar (RLQ) Steep radio spectrum (SSRLQ) Flat radio spectrum (FSRLQ)
Seyfert 1 Sy 1.01.9 Narrow line Sy 1 (NL51)		Broad line radio galaxy (BLRG)
Seyfert 2 NL X-ray galaxy (NLXG)	pe 2	Narrow line radio galaxy (NLRG)
LINER	pe 3	Weak line radio galaxy (WLRG)
Ту	pe 0	Blazar: BL Lac/OVV
		Fanaroff Riley class I(FRI) Fanaroff Riley class II (FRII)

Туре	Optical lines	Radio-quiet	Radio-loud		
Туре 1	Broad and narrow lines	Seyfert 1 Seyfert 1.5 NLS1	FSRQ, SSRQ, BLRG		
Туре 2	Narrow lines only Weak narrow lines	Seyfert 1.8, 1.9, 2 LINER /LLAGN	NLRG, type 2 QSO WLRG		
Туре 0	No lines	Sgr A*? Dormant AGN ^a	BL Lac, OVV		

Beckmann and Shrader book

Radio loud?	AGN type	Subtype	X-ray absorbed?	Broad Balmer lines?	Narrow Balmer lines?	FeKα?	γ-rays?
			$N_{\rm H} > 10^{22} {\rm cm}^{-2}$				
RL							
	Radio galaxy						
	0.5	WLRG	Yes	Yes	Yes	No	No
		BLRG	No	Yes	Yes	Yes	Few
		FR I/II	No	Some	Yes	No	No
	Quasar	Type 1	No	Yes	Yes	Yes	Some
	Quasar	Type 2	Yes	No	Yes	Yes	No
	Blazar	<i>.</i>					
		FSRQ	No	Yes	Yes	Some	Yes
		BL Lacs	No	No	No	No	Yes
RO							
	Sevfert 1		< 10%	Yes	Yes	Yes	No
	Sevfert 1.5		$\sim 30\%$	Yes	Yes	Yes	No
	Sevfert 2		> 90%	No	Yes	Yes	No
	NLS1		< 10%	Yes	Yes	Yes	Few
	ULIRGs		Yes	Yes	Yes	No	No
	LINER		Yes	No	Yes	Yes	No

Tadhunter (2008 review)

Many attempts to provide AGN unification (here some examples)

AGN Type 1 and 2 unification

Size-scales

Black-hole:< size ISCO acc. disc</th>Accretion disc: $\sim 3 - 10^4$ RsBroad Line Region: $\sim 1-100$ light daysMolecular Torus: $\sim 1-10$ light yearsNarrow Line Region: $\sim 300-3000$ ly

