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Overview on the Galactic Center and Sgr A*

(as key case of inefficient accretion)

Nature of the high-energy emission from the Galactic Plane: point-like vs. extended emission.
Presence of further extended structures (at different wavelengths)

Twenty-year history of Sgr A* flares and current multi-band interpretation
SgrA* quiescent X-ray emission

Molecular clouds as “postcards” from past SgrA* activity? Shedding light with high-imaging
Chandra observations

Transient X-ray emission very close to SgrA*: the discovery of a flaring magnetar

The deep view of the GC central degree as pictured by XMM-Newton, NuSTAR, and Swift
Dynamical mass of SgrA* SMBH

The line-map view of the Galactic Plane: thermal vs. non-thermal processes

The Fermi bubbles, eROSITA bubbles, X-ray chemneys, and jets

The close passage of clouds to SgrA*: fuel for accretion and flares?

The Galactic plane represents a laboratory for investigating many emission processes

(not necessarily all being accretion-related) - multiband perspective



Why X-rays?

Their penetrating nature allows detection of source emission also in cases of
strong extinction as in the Galactic Plane
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Galactic diffuse X-ray emission + pointlike contribution

Image: COBE/DIRBE
Contours: RXTE
(Revnivstev et al. 20006)




Looking deeper and wide, the diffuse emission is there

Full survey: 30 x 12 ks exposures Wang et al. 2002
1% of the Galactic stellar mass
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30 separate Chandra pointings (2001), =5000 X-ray sources
Resolution =0.5 arcsec on-axis, to 5-10 arcsec at large off-axis angles
Most of the detected sources at E>2 keV (because of Galactic interstellar absorption)



Looking even deeper in the central region, diffuse
X-ray emission is still present

>1 Ms over 7 yr

=4000 X-ray sources. : ‘ - " o
Ref: Baganoff et al. 2003; 4 * .
Muno et al. 2003; .3 s 9 «—» Color (energy) code
Park et al. 2004 S pC image

+ many more



The Galactic plane (center) as a melting pot
of multiple components

= A uniformly distributed soft emission (kT=0.8—-1 keV), likely associated to
SN activity.

» A less uniform kT=7-8 keV plasma (with ionized Fe emission at 6.7 keV) -
hard to be confined - possibly associated with faint X-ray sources (at least in
the inner GC center, where deep Chandra exposures are available).

» Clumpy 6.4 keV component, likely associated with molecular clouds and
reflection of X-rays.

Sound speed of the kT=7-8 keV plasma =1500 km/s vs. 900 km/s of the
escape velocity from the Galactic potential = a hot plasma would escape in
~30,000 yr

=>Any hot plasma would have to be generated continuously, requiring a
large (and partly unexplained) amount of energy (=104° erg/s)




Moderate-resolution spectrum of diffuse X-ray emission

Counts sec—! keV—! arcmin—2

3
(7]

lllllllll]lllllllll]lllllIIIIIIIIIIIIIIIIIIIIllllllllllllllllllllllll

Diffuse Emission

l:!." ™ Fo X%V He—o
Fe XXV Ly—a

S XNl He—a

Si XN Ly—a

Si Xl He—g
S XV He—§
Ar xVIl He—a
Ar VIl Ly—o
Ca XX He—=a

a

lonized]|

Y
kT=0.8 keV

kT=8.0 keV

lllllll

] |

" Resolved bright point-like sources masked out

1

2 3 4 5 &
Energy (kev)




Could the diffuse X-ray emission due to stellar sources?

n il A E 5] ]
The diffuse X-rays trace the distribution of stars, not the ISM (Revnivtsev et al.
2006). Diffuse X-rays associated with the old population of the Galactic bulge

The density of stellar X-ray sources per unit of stellar mass in the Solar
neighborhood is sufficient to explain the Ridge emission (Sazonov et al. 2006)

The local density of accreting white dwarfs scales as expected to the Galactic center,
i.e., it is the same as in the local stellar neighborhood (Muno et al. 2006)



The spectra of diffuse and point-like emission

lonized iron lines due to the contribution of point sources (better accounted for using
modern high-resolution X-ray instruments
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Q Originally: diffuse+discrete were thought as a unique component with kT=108 K because
of the limited (poor) angular resolution
Q Now: diffuse component=thin plasma with kT=107 K, possibly related to SN (as in Sgr A
East) + discrete sources (binaries) producing the 6.7 keV iron line (some still unresolved
in the inner regions of the GC)



Likely, the smooth background is mostly stellar/compact.

What about the patchy features?
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Some of the diffuse features trace the sites of recent star formation.

Winds, shocks, and SNRs are present (“violent” environment overall)



Arcs and filaments in radio

—— . i Y Many supernova remnants;
shells and filaments

ot Ar

SgrA

Sgr A*

© 2002 Brooks Cole Publishing - a division of Thomson Learning
AO Very Large Array c: Pedlar, K.

Magnetic reconnection is probably
at work in filaments (Wang+21)



Molecular clouds glowing in hard X-rays
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Iron fluorescence from molecular clouds

102k (a) Feature 1 1L (b) Feature 2

Counts sec™' keV™

Energy (kev) Energy (keV)

e Emission from molecular clouds exhibits strong Fe K-alpha
lines with equivalent widths of 1 keV (Park et al 2000)

e Produced when neutral iron in molecular clouds with

Np~1023 cm2 is bombarded either by photons (Koyama et al.
1996) or electrons (valinia et al. 2000)



What is the origin of fluorescence in MC?
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Problems with the two hypotheses:

e ~30 keV Electrons

— Only"0.005% of the energy would em'e'rge as Fe emission, the
remaining being lost in Coulomb collisions

e ~10 keV Photons ’

— No X-ray source bright enough to illuminate the features is currently
active.in the Galactic center.

-2 Transient.X-ray source? Linked to Sgr A* activity...



The Galactic Center and Sgr A*

Sgr A* as the origin of X-ray photons for the
glowing molecular clouds?




Chandra Galactic Center Deep Field
N
.

17 x 17 arcmin

40 x 40 pc

590 ks

Red: 2-3.7 keV
Green: 3.7-4.5 keV

Blue: 4.5-8 keV



Chandra vs. XMM-Newton




Properties of Sgr A*

* Mass ~ 4.3x10° Mg

» Distance ~ 8 kpc

* Quiescent X-ray luminosity ~ 2x1033 erg s-! (2-10 keV)
 Daily X-ray flares < 10%° erg s

« Eddington luminosity ~ few x 1044 erg s



Counts per 600 sec
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X-ray flaring of Sgr A*. |
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X-ray flaring of Sgr A*. |l
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Softnening/hardening of the X-ray spectrum during the big flares represent a
challenge for models (until the recent Chandra/HETG observation)
= Sgr A* has few large flares but minor flares have a rate of =1 per day



X-ray flaring of Sgr A*. lll

Sgr A* low luminosity

Lgora=3x1033 — 1035 erg s
= 6 SgrA ~ -9
MSgrA 4.3x10% M g, Legg = 5.6x10% erg s-1
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1.2 flares per 100ks from Chandra
3Ms monitoring (Nielsen+13)
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How was the Sgr A* accretion rate in the past?
Are we witnessing a peculiar moment of Sgr A*?



X-ray flaring of Sgr A*. IV

X-ray spectrum in flare
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X-ray flaring of Sgr A*. V

A recent event observed with Chandra HETG
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X-ray flaring of Sgr A*. VI
The NuSTAR view

Pre-Flare

X-ray Image of Galactic Center

Flare observed up to 40 keV 'byNuS?'AR

Infrared View of Milky Way Post-Flare
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X-ray flaring of Sgr A*. VII
The NuSTAR view
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HR=hard/soft

X-ray flaring of Sgr A*. VIIi
The brightest X-ray flares detected by Chandra
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Simultaneous observations of X-ray/near-IR flare of Sgr A*.
Early results. |
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Simultaneous observations of X-ray/near-IR flare of Sgr A*.
Early results. Il

' 1.0arcsecaperture | NIRowerap
112 Delay time<15 min (near-IR, then X-rays)

Limited-amplitude X-ray flare!
Possible explanation: SSC of low-energy
(mm/sub-mm) photons with electrons from a
compact (= a few Rg) region
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Simultaneous observations of X-ray/near-IR flare of Sgr A*.
Recent results vs. models. |

Since Eckart et al. (2004 ), several reports on IR and X-ray flares: either
simultaneous or X-ray leading the IR by <10 min

Possible mechanisms for IR flares: population of electrons undergoing
continuous acceleration due to turbulent processes in the inner accretion flow

IR connected to X-rays through models of pure synchrotron
(e.g., Ponti et al. 2017), SSC, and IC (all viable)

The synchrotron hypothesis supported by the spectral index of the flares (see
also Dodds-Eden et al. 2009). Re-acceleration by magnetic reconnection is
feasible

Observational problems: gaps in ground-based IR observations, typically
shorter than (space-based) X-ray observations



Simultaneous observations of X-ray/near-IR flare of Sgr A*.
Recent results vs. models. |

I ! I ! I ! I ' I ' I
10°+ & Very Bright Flare .
; '/.-.\ Thermal electrons with T,~a few 100K
10° @D et ; 7 and n,~106 cm- embedded in B~10-50 G
= ﬂz,’ 1 s , | producing the submm (synchrotron) peak
o 10° ?{// | T | and possibly the IC emission, R~10 Rqg
o \ < Y
‘© o ' P W » | Contribution from a non-thermal tail in the
— 103_ (o} \ , N e, ] .
~ i Ny o ¥R electron population (traced mostly at low
:|>’ o ‘.‘_ 2 ‘>.:’ '\,‘ """" frequencies)
- 10°+ / ,'i v £ Oy -
L ] ‘\_\ - Bremsstrahlung emission from hot
{2 @ Quiescence N > plasma (stellar wind) at Bondi radius
100~ Vetmn, | (~105 Rg, 1-arcsec region)
.ii \\ ‘T'\

16‘° | 16‘2 | 16‘4 | 1(1)‘6 | 16‘8 10%
Frequency (Hz)
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on the circum-galactic medium



Simultaneous observations of X-ray/near-IR flare of Sgr A*.
Recent results vs. models. lli
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The cooling break may evolve
due to an evolution in the
magnetic field (Ponti et al. 2017)



Synchrotron emission with cooling break

N(E)dE — EPJE Powerlaw distribution

of electrons (p=particle index)

0 — P — 1 Spectral index of the
9 synchrotron emission
3—p (SVOCV'O‘)

v L, ocy v @ =2 PtD/2 _ 5

Dodds-Eden et al. (2009) — see also Ponti et al. (2017)

Synchrotron emission may exhibit breaks due to cooling processes - synchrotron

emission with cooling break model to fit SgrA* flare emission

« The electrons responsible for the emission above the cooling break (due to
synchrotron losses) lose energy due to synchrotron cooling faster than they can
typically escape

 If the source of acceleration in the plasma occurs continuously (i.e, there is a
continuous injection of electrons from the heating/acceleration process), a steady-
state solution exists where the spectrum has a spectral index =(3—-p)/2 below the
cooling-break frequency and =(2-p)/2 above

Example: p=3.6 - =-0.3 at low E = a=(p—-1)/2)=1.3 > I'=1+0=2.3



Simultaneous observations of X-ray/near-IR flare of Sgr A*.
Recent results vs. models. IV

Flare lightcurves - delays
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_J] SINFONI 2.2um data (600-s integration)

‘ XMM-Newton (sum three EPIC cameras)
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‘ NuSTAR (sum two FPM cameras)

IR flare, then X-ray flare (~1 ks delay)

Combined Flare Data Diffraction-limited Simulation

S2 & . S92
SgrX SgrA*
. bl

X-ray count rate (cts/s), FK/4 (mdy)

0.5

. : cl : x L 2
-4000 -2000 0 2000 4000
Time since \X-ray flare center (s)

Ponti et al. (2017)

6000

Diffraction-limited
non-flare (quiescent) X-ray level : Near-IR data (flare) simulation




Simultaneous observations of X-ray/near-IR flare of Sgr A*.
Recent results vs. models. V

Chandra (2-8 keV)
(300-s bin)

xcess flux (m]

Spitzer (4.5um)
(3.5-min bin)

Four X-ray
flares =4 X
quiescence

Excess flux (m]y)
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Boyce et al.
(2019)
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Agreement with models describing both IR and X-ray flares as synchrotron emission

originating from particle acceleration events involving magnetic reconnection and shocks in

the accretion flow; still consistent with SSC processes
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Main results

X-ray (counts/s

(1) X-ray flares

have an IR flare,

not necessarily
the opposite

(2) X-ray flares of
low intensity may
be hidden in the
diffuse thermal
emission around
SgrA*

(3) X-ray flares
may lead the IR
by =10-20 min
(but 99.7% conf.
interval still
consistent with no
zero time-lag)
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X-ray spectrum of Sgr A* in quiescent state
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Quiescent + flare emission in Sgr A*

Chandra count rate distribution
function since 2013 (fraction of
time bins with a count rate
larger or equal a given rate)
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Pure Poisson
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Pure Power Law

£E=1.92

(Empirical CDF)
001

Emission from SgrA* as the
sum of a quiescent and a
flare emission (modelled in
two different ways in the two
panels)
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“Postcards” from the past:
how the molecular clouds reflect the past activity of
SgrA*
[mostly derived from Ponti et al. 2010]



Open problems: what is the origin of the hard X-ray emission
from molecular clouds (MC)

Galactic latitude, deg
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Former studies limited by spatial resolution
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The idea: molecular clouds as mirrors of past activity

(X-ray Reflection Nebula — XRN — model)

Reflected Emission from the Past Outburst of an X-ray Source




Reflected Emission from the Past Outburst of an X-ray Source

radiation (photons)



Reflected Emission from the Past Outburst of an X-ray Source
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radiation (photons)



The idea: molecular clouds as mirrors of past activity
(X-ray Reflection Nebula — XRN — model)

_ Face-on view of the Galactic Plane as seen
Sgr A* sits on the centre of the from the direction of the North Galaxy Pole
Central Molecular Zone (CMZ) I

bridge - Equal time-delay line
(parabola)

107-108 M of MC in the

central 300 pc (in total, 10% of the

neutral gas mass of the Galaxy) G0.11-0.11

..................

= MC are mirrors of the GC past
activity
I n, xr’°xL

SgrA*
FeK x d2

O

Light fronts appear to us as
parabola

ol
Earth

= Tool to study history of GC Sunyaev et al. 1993; 1998
emission



4aD* x F,,

Q=r"/4d* = =
TxL,x10"xZ

=5.17x10-4(F6-4) (0'1) (Z
10°%) \ t Z

“adapted” from Sunyaev & Churazov (1998)
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F6.4 = IFeK
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Q=solid angle of the cloud from the
location of the primary source (Sgr A*)
r=radius of the cloud

d=distance of the cloud from Sgr A*
D=distance to the observer (=8 kpc)
F¢.4=iron Ka line flux (in photons/cm?/s)
T=optical depth of the cloud

Ly=X-ray luminosity of the SgrA* flare
Z=iron abundance

Nny=column density of the cloud, related to
its optical depth 1




The high-energy (INTEGRAL) view of Sgr B2

0.1 T+ T ™
| ASCA/GIS ARTZRINTEGRAL/IBIS E INTEGRAL: MC - reflection
ﬂ : o b L — ; ) - N
T S N o g
[ e : .
1Y Large (>30%) level of linear
wal, B | polarization expected in X-rays
_
ol Revnivtsev et al. 2004 — see also
i | Kuznetsova et al. (2021) for >2011 obs.

10 100
Energy, keV

Decay time ~8.2+1.2 yr
~core light crossing time

IS o

IR

: +T+ ++ % + +
H

»
]

20-60 keV flux, mCrab
Fe Ka, flux 10 em2s™!

w
I
TR
o o
=) )

Fe Ka iﬁtensity

1— variability 4.8 ¢

o
N

ecaying Sgr B2 flux (fluorescence),. ... /cms/s/er
20-60 keV flux

: Terrier et al. (2010)

1994 1996 1998 ZOOD 2002 2004 2006 2008
ate (year) dato, yoar




Light Echoes from a Past Outburst of Sgr A*?
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The XMM-Newton monitoring of Sgr A
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6.4 keV map 2000-2009 mosaic 6.4 keV map — continuum

The X-ray continuum has ben removed from the iron map




Zoom into the inner regions
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Past activity of Sgr A*: Sgr B2 and G0.11-0.11

Galactic plane from above

Sgr B2
Ny= 8x1023 cm
Dproj= 100 pc but 130 pc in front of
Sgr A* (Reid et al. 2009)
Radius = 7 pc
normeex= 1.7x104 ph cm=2 s
Lo.10 kev sgrar ~ 1.4x10%% erg s
(Revnivtsev et al. 2004)
t =100 yr ago

G0.11-0.11

NL=2x1022 cm2 (Amo-Baladron et
)

Dproj=29 pC

Radius=3.7 pc
NOrmMgex=0.9x10-* ph cm2 s
Lsgras > 10%° erg s

t> 75 years ago

pc
Equal time-delay line
(parabola)

Toward the Earth

Assuming a flaregg a» = 1.4x10% d2 <]
: FeK
erg/s, lasting 210 yr and LsgrA* X —
terminated =100 yr ago F-Xny
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Past activity of Sgr A*: the Bridge

Bridge
NL=9x1022 cm2
Doro=15 pc
Radius=1.1 pc
NorMgek=1.1x10° ph cm2 s

Assuming L~1.4x10%° erg s
- 60 pc
=>» Sgr A* activity 400 yr

10
% >
N
e |
\
—.7_.—.— -
L 1 1 L L N 1 N

5x10-¢
1l

100 yr ago

Increasing Fe 6.4 keV emission in the Bridge =>» the light
front from SgrA* was emitted 400 yr ago



Galactic latitude

Sgr A complex: the Chandra view. |

1999-2011 mosaic - 6.4 keV map 2011 mosaic - 6.4 keV map
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Clavel et al. 2013

Strongly variable Fe Ka emission line from molecular clouds, suggesting reflection
Propagation of the “illumination” along the Bridge
Here MC2 flux decreasing at the 6.80 level
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Sgr A complex: the Chandra view. li
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Bridge spectra
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Sgr A complex: the Chandra view. lli

Color-coded variability

Galactic latitude

1999 - 2003 red
2004 - 2007 green
2008 - 2011 blue

0.14 0.1 0.06 0.02 359.98 359.94
Galactic longitude

MC1 and MC2: variability from West to East, then late illumination of Br1 and Br2
More complex variability pattern for G0.11-0.11 (Clavel et al. 2013)



Sgr A complex: the Chandra view. IV = The 6.4 keV line
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The Bridge f. Eastern component
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Sgr A complex: the Chandra view. V — The 6.4 keV line

a: Western component
f. Eastern component
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Sgr A complex: the Chandra view. VI
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\\ Linear decrease

1
/A O-year

Linear increase

@ 2-year
Peaked variation
A== Signal Propagation

No significant
Variation
Scale few arcmin 26" x 61" 15" x 15" : ST .
i\ Baisiiy S L e Spatially resolved variability analysis
Section 3 4 5 to possibly investigate the behaviour
Brl & Br2 Increasing @ @ of past SgrA* activity
MC1 Constant % §
MCc2 Decreasing - N
G0.11-0.11 -
60.04-0.13 - -

Clavel et al. (2013)



Alternative solutions to X-ray reflection nebula (XRN)

model: cosmic rays
(e.g., Valinia et al. 2000; Yusef-Zadeh et al. 2002, 2007; Capelli et al. 2011)

But keep in mind that

O X-ray variability time scales of small clumps
d “Decaying” behavior of the X-ray spectrum
O High apparent velocity of ~3c from the Bridge

all strongly suggest an external illuminating source and seem to rule out models
based on internal sources and/or cosmic rays




The Arches cluster - |

Massive star cluster 11 arcmin from Sgr A*
Age=1-3 Myr, =160 O-type stars, =3 x 10° Mg in the core
(10%)

One of the densest young-star regions

Tatischeff et al. (2012)



6.4 keV line flux (10° ph em?s™)

The Arches cluster - i

0.1 ¢ . v . . :
XMM-Newton - 2000-2009 observations E’ . | XMM-Newton (cloud) |
18 - '
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Constant X-ray flux for the Fe Ka emission line at 6.4 keV (EW=1.2 keV), in contrast
to other MCs
Presence of both neutral and ionized (due to the stellar emission) iron lines

=» Neutral line consistent with being produced by low-energy hadronic cosmic rays
LECRSs (i.e., bombardment of molecular clouds by energetic ions), accelerated in the
bow shock resulting from the cluster’s proper motion against the MC. The ambient
medium has a metallicity of about 1.7 times solar (Tatischeff et al. 2012)




The Arches cluster — lll. Analysis of sub-regions

Arches cluster

Arches cluster region
region

Sgr A complex

EPIC pn-MOS mosaic , o
6.336-6.464 keV ' ¢ Zoom and further
2000-2009 data smoothed image

Capelli et al. 2011

Map at 6.4 keV (fluorescence Ka line) consisting of bright spots (size<2 pc), high-
energy photons needed to produce fluorescence:
» Photoionization (X-ray reflection nebula, XRN, model)?
* Flare from a nearby X-ray source?
« Bombardment by high-energy particles?



The Arches cluster = IV. Analysis of sub-regions
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6.4 fluxes [photons/s/cm?]
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2002

2004

2006

2008

2010

Variable X-ray emission only from DX region
v’ Constant fluorescence emission in 3 out of 4 bright
knots =» Origin within the AC region (photons or particles)
v Photons: X-ray luminosity of AC not enough, not even
considering its X-ray emission during X-ray flaring activity
— likely from stellar winds interactions in one or more
binary systems — being three orders of magnitude below
requirements - importance of VARIABILITY
TIMESCALES + ENERGETICS
v Sgr A* past flaring activity (XRN model)? Variability in
the DX region too fast




The Arches cluster — V. Analysis of sub-regions

dl.o.s. % dl,o.s.

Leading Z=Z0 o 2=1.25Z¢
edge of Sgr*

outburst

Trailing
edge of Sgr*
outburst

XRN model as in Ponti+ Capelli et al. 2011
2=220 Tl E

Dependence
on metallicity
(hence iron _d
abundance)
and optical

Z2=1.5Z0

-

depth
X \VJ I \
Fast X-ray variability hardly compatible with any model
DX: hard X-ray spectrum: I.  SgrA* flare should have reached DX region (blue), decay not explained
=0.8-1.1vs. 1.3-14 II. CR particle bombardment: requires particle energy densities likely too high
expected from CR e~ (a few ten—hundred eV/cm? vs. =0.2 eV/cm? in the Galactic Ridge)
bombardment [ll. Emission from a binary = Ly=1037 erg/s over 8-yr interval (too long)




Considerations about outbursts



The duration of the outburst. |

Chandra mosaic, 5-8 keV band ] B | 2' (5 pc)

vvvvvv

M SgrA*
L | e ’ﬁ?&“i&
) - ’ » 7
M\ T} 7 4‘;‘- '/
: s

| 2009-2015

Churazov+17

Decomposition of X-ray emission into thermal and reflection components

Monte Carlo simulations of a spherical homogeneous cloud illuminated by a parallel
beam of X-ray radiation




The duration of the outburst. Il
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outburst. Peaks broadened by the finite spatial scale of the cloud

Support to a few-year duration of the outburst by Clavel+13: tidal
disruption event? Capture of a planet?



S0, we may need transient sources.
Are there any of these (besides SgrA*)?



A possible source of transient X-ray emission:
SGR J1745-2900. |

X-ray spectrum (magenta) compared to other
magnetar outbursts
BB with kT=0.9 keV and Rgg=1.4 km
constant; L[1-10 keV]=103% erg/s

4 days after
magnetar ; ] I [ A
flare [ Swif 1822- .“‘1'-vf'l.1 " * % x ¥
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Rea et al. (2013) Coti Zelati et al. (2015)

Magnetars are expected to exhibit flaring activity at various levels: giant flares (=104-47 erg emitted in several
minutes), intermediate flares (=1042-45 erg emitted in few minutes) and short X-ray bursts (=1038-40erg in less
than a second) plus persistent X-ray emission
1.~P/(2Pdot)=9000 yr is indicative of recent star-formation activity in the Galactic disk



A possible source of transient X-ray emission:
SGR J1745-2900. Il - Temporal evolution of the BB
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The NuSTAR view of the Galactic Center



The 10-40 keV NuSTAR mini survey

E1743-2843
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Sgr A-E knot

"% Molecular clouds

6 tiles, ~700 ks




Similarities with Chandra

NuSTAR 3-79 keV ~ Chandra 2-10 keV

Baganoff et al., 2003

© NW Clump

\.

Sgr A East
Sgr A-East: purely thermal

SE Clump




The Arches cluster seen by NuSTAR

Ellipse: Fe 6.4 keV emission line \ NuSTAR
Circle: Fe 6.7 keV emission line \ \ } 9.97005

r 2.000-04

r 4.95e05

241e05

1.15e-05

5.18e-06

1.88e-06

3.97e-07

-4 04e-07

-8.01e-07

10-20 keV

-1.00e-06

» Core component + extended halo emission in the 3—10 keV band

« Extended emission in the 10—-20 keV energy range well beyond the Arches cluster with a
spatial morphology consistent with the Fe Ka emission-line emission observed with XMM-
Newton - reflection

—> Overall emission consistent with a thermal component mostly due to multiple collisions

between strong winds of massive stars and a non-thermal one (powerlaw) due to LECRSs.
X-ray photo-ionization and CR-induced emission models can reproduce data equally

well (Krivonos+14)




The latest news from NuSTAR:
Viewing the GC in the hard X-rays

« Detection of hard X-ray emission centered on Sgr A*: population of
massive magnetic CVs (largely intermediate polars)?

« Detection of non-thermal X-ray filaments: PWNe? SNR-cloud
interactions?

« Hard (>10 keV) X-ray emission from MC1 and the Bridge

Arches cluster

- SgrA* complex

ey,

0.10! MC1 5 355,50
S()tThe‘.B'rjdge( louds

.
( . A
.-

SNR
mol clouds

Mori et al. (2015) 10-79 keV




The Swift/IXRT view of the Galactic Center



The Swift view (2006-2014) of the Galactic Center. |

XMMU J174457-2850 3 1.3Ms SwiftIXRT
.O data

SgrA* + magnetar +
9 transients X-ray
@ binaries (up to =103/

erg/s)

GRS 1741.9-2853

Swift J174535 .5-285921

CXOGC J1745400-2 A'«'
» CXOGC J174538.0-290022

Sgr A* [
SGR J1745-29 : CXOGC J174553.5-290124

AX J1745.6-2901
Swift J174553.7-290347

@)

Swift J174622.1-290634

O

Degenaar et al. 2015




The Swift view (2006-2014) of the Galactic Center. |l

Sgr A+ / SGR J1745-29
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The scheduling of Swift/XRT observations have allowed the tracing of bursts from
SgrA*, hence their demography and statistics 2 constraints on models (once
combined with Chandra and XMM-Newton results), low-intensity vs. high-intensity
burst activity in the GC



SgrA*: the right place for dynamical studies



Dynamics of the Galactic Center
from high-resolution near-IR imaging
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The line-map view of the Galactic Center:
from X-ray to near-/far-IR and radio emission.
Thermal vs. non-thermal processes



The deepest and largest XMM-Newton view of

the central degree of the Milky Way
(Ponti et al. 2015)

Red: 0.5-2 keV
Green: 2-4.5 keV
Blue: 4.5-12 keV
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Still missing X-ray-radio associations
SN rate=(3.5-15) x10*yr'=» SFR=(0.035-0.15) Mg yr'over the past several x 1000 yr
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Line-map exposures of the Galactic plane

Line EW MAPS pinpoint diffuse emission mechanism

Sulfur 1.8 keV
Silicon 2.5 keV
Iron Ko 6.4 keV

Pulsar G 0.9+0.1

LMXBI1E 1740.7-2342
€

oreground star cluster

{ )

S/Si trace hot thermal gas associated with active star formation
Fe Ka traces cold reflection and is likely associated to past higher activity of Sgr A*
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Foreground star cluster
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Central Molecular Zone:
The external structure of an AGN torus

Sgr B
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Radio: 20 cm
Mid-IR: 25um
X-ray: 6.4 keV

Thermal filaments

Arches cluster
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The Fermi bubbles



A recent discovery by Fermi— The Fermi Bubbles

Fermi data reveal giant gamma-ray bubbles

e Credit: NASA/DOE/Fermi LAT/D. Finkbeiner et al.



Bubble extension

Gamma-ray emissions

Cartoon by
Su et al. 2010

AT

% WMAP haze E
8 field

Galactic disk

X-ray emissions

© 50,000 light-years

-

‘Milky Way

=10kpc above and below the Galactic plane
L=4 X 1037 erg/s (=105 erg in total)

Possible explanation:
Sharp edges - transient event cause by a huge energy injection in the GC in the last 1-10
Myr: BH accretion event (but needed 10 erg a few 108 yr ago)? Nuclear starburst?
(Finkbeiner et al. 2010, ...)
Cosmic-ray electrons may be responsible for the radio emission (synchrotron) and the y-ray
emission detected by Fermi (inverse Compton) — rapid e~ transportation or in-situ acceleration




ROSAT, MAXI and eROSITA “pictures”

b) 3/4 keV (R45) A S Snowden et al. 1997
,—»"’))\,'.f"':fgwaN% :, i ". £ 3 'f"/“"\z 500

Kimura+, MAXI results
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ROSAT soft X-ray map St g‘ A
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eROSITA soft X-ray map

SRG/eROSITA , T - 0.3-2.3 keV - RGB

1.7-4.0 keV Preliminary




The Planck haze

Planck

The Galactic haze/bubbles is shown
here in PLANCK data from 30-44 GHz

CRmTi The same structure at 2-5 GeV as seen by
R A the Fermi Gamma-Ray Space Telescope

A multi-wavelength : S :?.'i, 5
composite image showing P | . _
both microwaves and - Galiet o
gamma-rays: PLANCK 30 GHz gLy o ﬁ,.

(red), 44 GHz green)and = '
Fermi 2.5 GeV (blue). % R

Planck Collaboration, 2012



The Fermi Bubbles: AGN vs. starburst activity

AGN bubble? Tentative evidence for
—— a y-ray jet (8kpc), 15° from the
Galaxy rotational axis? (Su &
Finkbeiner12) — not confirmed

7 oPWN 0.80 GeV < E < 3.20 GeV

SgrA®.\ge B
Bubble BN+ 50 |

-

»>
»

Stocburst

15
5
: e i
. fARSE NS 10 -
ﬁ A ™ %
» "I. ':
. ”‘ - 05
- 100 | Starburst-driven wind (as observed in
’ s > local galaxies/Seyferts)? — Lacki13
&0 e los What causes the confinement?
25 0 25

Mini-cavity

L1-100Gev; (i€1)=10% erg/s



The eROSITA view

Predehl et al. (2020, Nature) Q To inflate the eROSITA bubbles, an
average luminosity of ~104" erg/s is
needed during the past tens of millions
years

Q Their energetics is at the boundary for
SNe explosions associated with the
past star-formation activity of the MW

Q They could be inflated by a 1-2 Myr of
Seyfert-like (~1043 erg/s) activity by
SgrA*. The long cooling time of the hot
plasma is consistent with this picture.

eROSITA bubbles vs. bubbles

eROSITA: 0.6-1 keV, point sources remove

o Are the Fermi bubbles driving the
expansion of the eROSITA bubbles?

o Are the two extended structures
associated with the same
(gradual/instantaneous) energy release
in the nuclear region of the MW?



The Fermi bubbles are not the only extended structures.
The X-ray chimneys above and below the GC. |

300 x 500pc

Red: 1.5-2.6 keV
Green: 2.35-2.56 keV (Syy) N
Blue=2.7-2.97 keV (continuum emission)

10

On a much more (and innermost) scale

» About =160 pc (%=1 deg) N-S extension,
+50 pc (£0.4 deg) along the Galactic b £ - N . -
plane T IR Y

« Comparable brightness and color of the
two extended emissions - common
origin most likely

Galactic latitude

« Two structures not strictly symmetric wrt.
the Galactic plane

Ponti et al. (2019, Nature)

L N

Galactic longitude



The X-ray chlmneys above and below the GC. Il

several degrees

a) '
-
E
G
Chimneys
________________________________ about =160 pc
Rosat (. A Galactic longitude
Chandra 1.5-7.keV () \\
17 15pc PR 2 R\
()
o
“6 ...................
(7))
c
kS
2 ‘ i / X-ray counterparts i - O il
-l N e /  toFermiBubbles 1\ 1 RS - 359
. SgrA*1Dbe§/ — , }-\-\- "-mmw -\m(?‘a-aciic-lowit-l‘ds "TEEEEEEEEw

\ ,
Ponti et al. (2019, Nature) *l Sgr A*’s bi-polar lobes: 115pc [panel d)] |




The X-ray chimneys above and below the GC. lli

* E; (£15pc lobes, thermal energy)~6 X 10%0 erg +
ts (sound crossing-time of the lobes) ~3 X 104 yr >
L15pc~8 X 1038 erg/s > modest requirement in
terms of time-average energetics (TDE - tidal
disruption events - and SN feasible, besides SgrA*
activity)

« Higher energetics in case of very low filling factor
for the X-ray emitting gas

* E4 (chimneys, 160pc, thermal energy)~4 x 1053
erg + tg (sound crossing-time of the chimneys)
~3X10%yr = Lygopc~4 % 10% erg/s - TDE and
SN still viable options.

« The kT~0.7 keV gas may be close to hydrostatic
equilibrium (feels the Galactic grav. potential)

- The chimneys could represent the
channel excavated by powerful outflows
associated with a series of past episodic
events connecting the GC with the halo

« Long cooling times (~2 x 107 yr ) expected

+ Edge-brightened morphology consistent with interation of the
gas with the denser ISM

» Confinement by ISM or magnetic field

- SF-powered mechanism most likely

Column density (1022 cm™) @

o

Temperature (keV)
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Surface brightness

Latitudinal variations of the physical parameters of
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the X-ray plasma
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Latitudinal distance from Sgr A* at / = 0° and / = -0.7° (pc)

Ponti et al. (2019, Nature)

(from the presence of stars of the CMZ at the base of the chimneys)

| SB



The X-ray chimneys above and below the GC. IV

Latitudinal profiles

;KT o n23

+ adiabatic (iso-entropic)
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Ponti et al. (2019, Nature)

Chimneys are not simple adiabatic continuation of the outflow of the =15pc lobes

* inner lobes as the most recent episode of energy injection into the chimneys?

» chimneys as the way to transport energy from the GC to the Fermi Bubbles?

Power(Fermi Bubbles)~10%0-1044 erg/s >> P(chimneys) - likely a lower limit: only a fraction of
energy can be deposited into the X-ray emitting gas

« data consistent with a SN-powered wind with limited role from SgrA* (but further support to this

hypothesis is needed)



Galactic latitude

The radio view of extended emission

~140 x 430 pc (~1x3 degz)‘extensmn 1.2 GHz map 7 el [fiees 1
g ge % | magnetlzed filaments ~
1.0° 1.0° —
0.5° 0.5° B s, O
= I 1
s Radio arc [
() B » Y . &;
0.0° - 0.0° = A
©
o g
g ks
2 |
-0.5° G 05—
-1.0° -1.0° — \
~ Foreground |
H n region _
-1.5° -1.5° g : =1
- Excess X-ray plasma -
E) 2 e . o B | _I 1 I I I I [ R || I | I 4 .I fal I I I: | I 1 I I 1 1 r
1.0° 0.5° 0.0° 359.5° 359.0° 1.0° 0.5° 0.0° 359.5° 359.0°
Galactic longitude Galactic longitude

Heywood et al. (2019, Nature)
MeerKAT radio data (6” res.)

Edge-brightened and bounded structure, largely overlapping with X-ray chimneys
Synchrotron, age~a few million yrs, E~7 x 1052 erg for the progenitor
Cosmic ray (CR) and gas pressures required to drive outflows along the magnetic field lines
Relativistic CR particles is likely powering the synchrotron emission of the bubbles




Recap of extended emission
(below/above the plane) in our Galaxy

The mechanism for the progenitor event is still unknown (likely something
happening close to SgrA*)

Not necessarily the same event is responsible for all the reported emissions
(different energetics, similar spatial distributions in some cases)

The radio bubbles can be one example of a series of intermittent events,
possibly combined with weakier and steadier outflows - cumulative influence of
these events being possibly responsible for the observed extended radio, X-ray
and y-ray structure connecting the Galactic Center region with the regions at
high latitude



Are jets, or jet-like structures, at some scale
unusual in the GC region?



The pc-scale jet. |

VLA 1.3cm map with 3.6cm intensity contours

Chandra 2-8 keV image
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Li & Morris (2012)

One shock front in the radio and X-ray emission: any possible link?




The pc-scale jet. |l

VLA 1.3cm map

Chandra 2-8 keV image
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Shock front due to the pc-scale, one-sided jet, hence X-rays from the post-shock
region downstream along the jet path. X-ray emission is almost constant over 10 yrs.
Absorbed power-law emission L(2-10keV)=2 x 1032 erg/s, i.e., non-thermal

(synchrotron?) emission as in extragalactic jets



The pc-scale jet. lll

New Chandra 2—-8 keV image

Zhu et al. (2019)

Photon flux (ph/cm?/s)

No flux/spectral variations
after the passage of G2
Synchrotron cooling from
shock-induced relativistic
electrons, cooling along the
jet (tcoo|~1 yr)
Length(jet)~7.5"~0.3pc
(before being dominated by
bkg emission)

Stable jet over ~20 yrs

|
4

T (108 s since Jan. 1st, 1998)

1



Following a gas cloud in its passage close to SgrA*.
Any effect on SgrA* activity and flaring rate?

‘Live’ accretion event



The cloud: detection and orbit

July 2011 L’

Detection in the L’ band, non in Kg = not a star, dusty ionized cloud in motion
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V, gg (km s7)

Gillessen et al.(b612

The velocity shear in the gas cloud

0.2 0 04
Offset from Sgr A* (arcsec)

0.2

500

1,000

1,500

2,000

Gas cloud properties
» Gas cloud (M=3M_,,) photo-ionized by the
radiation field from nearby massive stars
* Highly elliptical (€=0.94) orbit
* Disruption already begun since 2008
* Velocity=1700 km/s (in acceleration)
» T=550 K; L=5 Ly; n.=(0.1-2) X 10° cm-3

Predictions
» Shock with hot gas in the inner region = T=(6-
10) X 108 K =» X-rays (L,_ge,=10%* erg/s vs.
quiescent=1033 erg/s)
» Radiated energy <1% of the total E;, of the
cloud (E=10%54 erg)
* Cloud can eventually feed the BH in out
Galaxy (with a radiative efficiency of =1-10%)

Nature
Colliding winds in the stellar disk (binaries) may
create low angular momentum gas falling in the
potential well of SgrA*



The cloud: observations with VLT




Modeling the cloud orbit and behaviour

Possibility of long-lasting mechanism to feed the BH in SgrA*
Closest approach predicted for 2013, then spring 2014 ... then Atel update...




G2 closest approach to SgrA*
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Detection of Galactic Center Source G2 at 3.8 micron
during Periapse Passage Around the Central Black Hole
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We report new observations of Galactic Center sources G2 & SgrA* from the W. M. Keck
Observatory. Both sources are of great interest and vary temporally: G2 is the putative gas cloud
now passing through periapse in its orbit around the black hole at the center of the Milky Way
Galaxy and SgrA*® is the emission associated with the central black hole. Our observations were
obtained on 2014 March 19 & 20 (UT) with the Keck II laser guide star adaptive optics (LGSAQ)
system and the facility near-infrared camera (NIRC2) through the K'[2.1 pm] and L'[3.8 j¢m]
broadband filters. At this time, G2 was expected to have been at closest approach with a
separation from SgrA* of only <20 mas and. therefore. to be spatially unresolved from SgrA®* in
our L' observations, which have an angular resolution of =90 mas. Nevertheless, the two can be
disentangled spectrally. In the L'-band. both Sgr A* and G2 contribute to the total flux: however,
Sgr A*'s L' flux is estimated and removed based on (1) the K'-flux, where G2 does not contribute
significantly, and (2) the well measured and constant K*-L' color of Sgr A*. Each night. roughly

20 interleaved measurements were made at cach wavelength (exposure time of 28 and 30 sec at K'

and L', respectively), with a duty cycle time of 134 sec for the two wavelengths. Our preliminary
estimate of G2's 3.8 ym de-reddened flux density is 1.7 = 0.2 mJy (or equivalently an observed
magnitude of 14.1 £0.2 in the L'-band), which is consistent with measurements from carlier years
(2002-2013). During these observations, SgrA® was quite faint (3.8 ym de-reddened flux density
of 1.5£0.2 mlJy, which is 1/30 of the maximum observed at near-infrared wavelengths), allowing
G2's flux density to be robustly measured. We conclude that G2, which is currently experiencing
its closest approach, is stll intact. in contrast to predictions for a simple gas cloud hypothesis and
therefore most likely hosts a central star. Keck LGSAQ observations of G2 will continue in the
coming months to monitor how this unusual object evolves as it emerges from periapse passage.

UCLA Galactic Center Group

March 2014: the closest approach of G2 to SgrA*
observed with Keck adaptive optics

SgrA* has L'(3.8um) de-reddened flux density of
1.5+0.2 mJdy, while G2 has L'=1.7%=0.2 mJy
(mag=14.1=%=0.2), which is consistent with
measurements from earlier years (2002-2013),
i.e., G2 is still intact
Presence of a central star?




Keck
near-IR obs.
(late 2014)

e



Excess above mean flux density

Delta Flux @ 1 GHz (Jy)

G2 cloud: no significant variation in the radio

L=1.5 GHz
S=3.1 GHz
C=5.4 GHz

Bower et al. 2015
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SgrA* unprecedented variability in the near-IR
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Not only G2 can be responsible for the variability of SgrA*...

Possible explanations for SgrA* variability: (a) closest SO0-2 passage to SgrA* in 2018
(b) delayed enhancement due to G2 passage in 2014



Evidence for a recent increase in the bright flaring rate. |
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Four bright flares in =130 ks XMM-Newton obs. vs. <bright flaring rate> from Chandra 3Ms
monitoring of =0.3 per 100ks (0.4 such bright expected in 130ks) 4 1 observed Chandra =» 5

bright flares observed in 200ks vs. 0.6 expected (not a stochastic fluctuation at the 3o level)
+ 1 from Swift = 6 in total in 272ks (3.80 significance level above constant rate)




Evidence for a recent increase in the bright flaring rate. Il

Flare fluence distribution
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3.5 past years flaring rate
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Apparent increase in the bright/very-bright flaring activity after the G2 pericenter passage (and
decrease of moderate flares)

U Real? Similar to what is observed in quiescent BHs and related to the inner accretion flow
Outer envelope of G2 captured by SgrA*? Increase of accretion rate? Shocks?
U Related to the increase of X-ray monitoring? (i.e., observational bias)




SgrA* luminosity in the bright flares

Bright-very bright flares
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large increase
in recent years
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The increase in Sgr A* X-ray luminosity during bright flares
in 2014 campaing is significant at the =3.70 level

Ly M Moscibrodzka et al. (2012)




Evidence for a recent increase in the bright flaring rate. Il
[inclusion of 2016-2018 data: Chandra, XMM-Newton, Swift]

* Increase by a factor ~3 in the flaring rate of the most luminous and energetic flares
(flux>1.1 X 10-" erg/cm?/s; fluence>1.68 x 10-8 erg/cm2) since Aug 30, 2014
» Constant flaring rate (2.4%0.2 flare per day) for the fainter (more common) ones
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