Active Galactic Nuclei – III X-ray surveys and AGN evolution

AGN-galaxy co-evolution

AGN as a key phase of a galaxy lifetime

Scaling relations between **BH mass** and **host galaxy properties** (stellar bulge mass, luminosity, velocity dispersion) AGN and galaxies closely tied → co-evolution

Semi-analytic models of BH/galaxy

co-evolution (e.g: Kauffmann+98, Volonteri+06, Salvaterra+06, Rhook&Haehnelt08, Hopkins+08, Menci+08, Marulli+09)

These follow the evolution and merging of Dark Matter Halos with cosmic time and use analytic recipes to treat baryon physics. <u>Condition: nuclear trigger at merging</u>

The cosmic cycle of galaxy and AGN evolution

(Hopkins et al. 2006)

Mergers between gas rich galaxies drive gas which fuel both SF and QSO activity (QSO mode) Obscured growth (ULIRG, sub-mm phase, 4π covering?)

BH feedback expels gas \rightarrow broad-line QSO

Shut down of BH activity dead quasars (or slowly accreting BH) in red galaxies (radio mode)

The BH/galaxy evolutionary model

Simulated formation of a $\approx 10^9 M_{\odot}$ BH at high z

- Early on
 - Strong galaxy interactions= violent star-bursts
 - Heavily obscured QSOs
- > When galaxies coalesce
 - accretion peaks
 - QSO becomes optically visible as AGN winds blow out gas
 - outflows as direct evidence for strict QSO/galaxy relation (feedback)
- Later times
 - SF & accretion quenched
 - red spheroid, passive evolution

Accretion and star formation over cosmic

Black hole accretion rate density (BHAD)

Vito et al. (2018)

still large uncertainties and observations vs. model discrepancies

Obscured AGN growth and star formation at z≈2

Obscured AGN in sub-mm galaxies

Large reservoir of gas available for accretion and SF

Further indications from mid-IR/ optical selected sources

Deep X-ray fields and stacking techniques needed to estimate average source properties

Obscured accretion = key phase in AGN growth and AGN/galaxy coevolution → Much of the mass growth of SMBH occurs during the heavily obscured phase (e.g., Treister+10)

Compton-thick AGN

Storing the accretion history of the Universe in the XRB

Two main open issues

High-redshift

BH/galaxy co-evolution still unconstrained at very high-z (z>6 or so). Already formed luminous QSOs at z=6-7

Heavily obscured AGN

Heavily obscured accretion mostly unconstrained beyond the local Universe

Requirement: a complete census of AGN activity

Information stored in the X-ray background

The spectrum of the cosmic XRB

The first spectral data (1980) in the 3-60 keV band could be reproduced accurately by thermal emission from an optically thin plasma: $F(E) \approx E^{-0.29} e^{-E/41 \text{keV}}$ (bremsstrahlung)

Can a diffuse plasma emission explain the XRB?

No!

- Subtracting AGN implies an XRB spectrum no more compatible with bremsstrahlung emission
- CMB represents a perfect blackbody; hot gas (T~40 keV ≈ 4×10⁸ K) would produce distortions by inverse Compton effect (Mather et al. 1994)

The spectral "paradox"

The spectrum of the cosmic XRB as sum of obscured and unobscured AGN (following the original idea of Setti & Woltjer 1989)

Resolved XRB fraction: still a "missing" population?

AGN X-ray spectral templates with different N_H

Likely around one hundred "secure" (i.e., with broad-band X-ray data available) Compton-thick AGN known at present. Most of them are local AGN Unabsorbed: logN_H<21

Compton-Thin 21<logN_H<24

Compton-Thick: Mildly (log $N_H = 24-25$) Heavily (log $N_H > 25$)

The cold gas in the torus contributes to the iron $K\alpha$ line emission.

As $N_{\rm H}$ increases, the spectrum is absorbed towards higher and higher energies.

Fitting the XRB with the most up-to-date AGN synthesis model (Gilli et al. 2007)

Way to provide a census of AGN activity: X-ray surveys

Large-area survey to pick up luminous and rare AGN

Relatively bright optical counterparts, easier optical IDs Deep-area survey to pick up faint and distant AGN

Typically faint optical counterparts, difficult optical IDs

What is the best observing strategy for X-ray surveys?

would be needed, so not practicable at present)

RASS: all sky in the soft band

Now: *eROSITA* (German/Russian mission) in the soft and hard band, ALL SKY

Table 1 Selected extragalactic A-ray surveys with Chanara, AMM-Ivewion, and NuSTAR	Table 1	Selected extragalactic X-ray	y surveys with Chandra, XMM-Newton, and NuSTAR
---	---------	------------------------------	--

Survey name	Rep. Eff. Exp. (ks)	Solid angle (arcmin ²)	Representative reference
Chandra (0.3–8 keV)			
Chandra Deep Field-South (CDF-S)	3870	465	Xue et al. (2011)
Chandra Deep Field-North (CDF-N)	1950	448	Alexander et al. (2003)
AEGIS-X Deep	800	860	Goulding et al. (2012)
SSA22 protocluster	392	330	Lehmer et al. (2009a)
HRC Lockman Hole	300	900	PI: S.S. Murray
Extended CDF-S (E-CDF-S)	250	1,128	Lehmer et al. (2005)
AEGIS-X	200	2,412	Laird et al. (2009)
Lynx	185	286	Stern et al. (2002)
LALA Cetus	174	297	Wang et al. (2007)
LALA Boötes	172	346	Wang et al. (2004)
C-COSMOS and COSMOS-Legacy	160	6,120	Elvis et al. (2009)
SSA13	101	345	Barger et al. (2001b)
Abell 370	94	345	Barger et al. (2001a)
3C 295	92	274	D'Elia et al. (2004)
ELAIS N1+N2	75	590	Manners et al. (2003)
WHDF	72	286	Bielby et al. (2012)
CLANS (Lockman Hole)	70	2,160	Trouille et al. (2008)
SEXSI ^a	45	7,920	Harrison et al. (2003)
CLASXS (Lockman Hole)	40	1,620	Trouille et al. (2008)
13 h Field	40	710	McHardy et al. (2003)
ChaMP ^a	25	34,560	Kim et al. (2007)
XDEEP2 Shallow	15	9,432	Goulding et al. (2012)
Chandra Source Catalog (CSC) ^a	13	1,150,000	Evans et al. (2010)
Stripe 82X–Chandra ^a	9	22,320	LaMassa et al. (2013b)
NDWFS XBoötes	5	33,480	Murray et al. (2005)
XMM-Newton (0.2–12 keV)			
Chandra Deep Field-South (CDF-S)	2820	830	Ranalli et al. (2013)
Lockman Hole	640	710	Brunner et al. (2008)
Chandra Deep Field-North (CDF-N)	180	752	Miyaji et al. (2003)
13 h Field	120	650	Loaring et al. (2005)
ELAIS-S1	90	2,160	Puccetti et al. (2006)
Groth-Westphal	81	730	Miyaji et al. (2004)
COSMOS	68	7,670	Cappelluti et al. (2009)
Subaru XMM-Newton Deep Survey (SXDS)	40	4,100	Ueda et al. (2008)
Marano field	30	2,120	Lamer et al. (2003)

25

23

10,440

3,600

Baldi et al. (2002)

Chiappetti et al. (2005)

HELLAS2XMM^a

XMM-LSS XMDS

efforts of the last ~20 years with major X-ray facilities

(Brandt & Alexander 2015)

Table 1 continued

Survey name	Rep. Eff. Exp. (ks)	Solid angle (arcmin ²)	Representative reference
3XMM ^a	15	2,300,000	Watson (2012)
Stripe 82X-XMM-Newton ^a	15	37,800	LaMassa et al. (2013a)
XMM-LSS	10	39,960	Chiappetti et al. (2013)
XMM-XXL	10	180,000	Pierre (2012)
Stripe 82X-XMM-Newton Targeted	8	129,600	PI: C.M. Urry
XMM-Newton Slew Survey (XMMSL1) ^a	0.006	8×10^7	Warwick et al. (2012)
NuSTAR (3–24 keV)			
Extended CDF-S (E-CDF-S)	200	1,100	Mullaney et al, in prep
AEGIS-X	270	860	Aird et al, in prep
COSMOS	65	6,120	Civano et al, in prep
Serendipitous survey ^a	22	19,000	Alexander et al. (2013)

^a Serendipitious survey; see Sect. 2.1 for brief discussion regarding such surveys

Chandra Deep Fields

up to the 4 Ms exposure in the CDF-S (Xue et al. 2011): 740 X-ray sources (≈60% with spec. redshift)

2000

0.5-8.0 keV Effective Exposure (ks)

3000

4000

1000

The 7Ms Chandra Deep Field South. I.

The deepest X-ray exposure ever

- 1008 X-ray sources (992 with counterpart, ≈66% with spec. redshift)
- At least 70% are classified as AGN (the remaining are galaxies and stars)
- Inner 1 arcmin region: $F_{[0.5-7keV]}=1.9 \times 10^{-17} \text{ erg/cm}^2/\text{s}$

 $F_{[0.5-2keV]}=6.4 \times 10^{-18} \text{ erg/cm}^2/\text{s}$ $F_{[2-7keV]}=2.7 \times 10^{-17} \text{ erg/cm}^2/\text{s}$

The 7Ms Chandra Deep Field South. II.

The 7Ms Chandra Deep Field South. III.

Redshift distribution AGN vs. Galaxies

The 7Ms Chandra Deep Field South. IV.

The 7Ms Chandra Deep Field South. V.

R- (left panel) and K_S -band (right panel) mag vs. X-ray Flux

Source statistics fundamental to populate luminosity and redshift bins and study AGN evolution and demographics

Chandra Deep Field South: XMM 3 Ms exposure

Larger field-of-view than Chandra, larger effective area, worst PSF, higher background → good for X-ray spectral analysis of relatively X-ray bright sources

The 3 Ms XMM-Newton Survey in the CDF-S. I

Comastri et al. (2011) see also Iwasawa et al. (2020)

Observed flat X-ray spectra → reflection/transmission dominated, strong iron Kα line

The 3 Ms XMM-Newton Survey in the CDF-S. II

The 3 Ms XMM-Newton Survey in the CDF-S. III

combining hardness ratio (HR) + iron K α EW analysis to pick up obscured sources

X-raying the COSMOS

Large area of sky (≈2 deg²) surveyed at bright flux limits

> XMM-Newton 1.55 Ms 1822 sources

Sampling X-ray fainter fluxes going deeper on a smaller region

> Chandra 1.8 Ms 1761 sources

2.8Ms additional Chandra data to cover the entire ~2 deg² (going deep)

Chandra 4.6 Ms 2.2 deg² 150 ks uniform 4016 sources

<u>15 arcmin</u>

E٩

AGN cosmological evolution

Objects with lower luminosity peak at lower redshift, similar to what observed for SFR in galaxies \Rightarrow cosmic downsizing QSOs peak at z~2-3, AGN at z~0.5-1 The number density of AGN evolves differently for sources of varying luminosities
LDDE (luminosity-dependent density evolution) is the current, widely accepted parameterization of AGN evolution in X-rays

The density of the most luminous AGN peaks earlier in cosmic time than for less luminous objects, which likely implies that large black holes are formed earlier than their low-mass counterparts

Similar behavior for galaxies: massive galaxies tend to form stars earlier and faster than less massive galaxies (*downsizing*, Cowie+96)

Density Evolution: AGN more numerous in the past

Dependence of the obscured AGN fraction on X-ray luminosity and redshift

Broad consensus for an obscured AGN fraction declining towards high intrinsic luminosities → receding torus model (Lawrence 1991, Simpson

2005; see also Lusso et al. 2013) Behavior with z still debated (see e.g. La Franca et al. 2005; Treister & Urry 2009; Iwasawa et al. 2012; Vito+13, 14) – see also Buchner+15

High obscured AGN fraction at high redshift

