Active Galactic Nuclei = IV

Mid-IR emission from AGN and the quest for
heavily obscured AGN



AGN Spectral Energy Distributions



X-RAYS from corona/base of jet

OPTICAL/UV from disk

RADIO from jet
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Broad-band spectral energy distribution of AGN
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Mid-IR emission from AGN



Models for the infrared emission of AGN (l)

to observer

i

Smooth dust distribution .

dust grains around a central source (AGN) in a
smooth distribution (e.g., Pier & Krolik ‘92, '93)

Clumpy models

dust grains in clouds (not uniform distribution) A
Type 2 AGN can be seen also at large

inclination angles over the equatorial plane
(e.g., Nenkova et al. ‘02, ‘08)




Models for the infrared emission of AGN (ll)

Smooth dust distribution: main properties

* The source is obscured if radiation intercepts the torus, hence
obscuration is related to geometrical issues

 Dust temperature is a function of the distance from the source of
the radiation field

Clumpy models: main properties

» The probability of direct viewing of the AGN decreses away from
the axis, but is always finite

» Different dust temperatures coexist at the same distance from the
radiation source, and the same dust temperature occurs at different
distances

to observer

AGN type is a viewing-
dependent probability

Alternative modeling: hydromagnetic disk wind

* Torus=toroidal region of a wind, structured in outflowing clouds. The acceleration is
provided by magnetic field lines anchored in the disc (Blandford & Payne ‘82; Elitzur ‘08)
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Smooth-density torus Torus with decreased covering factor Clumpy, soft-edge torus

The covering factor can be estimated using
SED fitting with multiple (host galaxy and AGN) components
(but model degeneracies may affect the results)

Elitzur 2011 Currently: attempts to link the properties of the

absorber derived from X-rays with those of mid-IR
and SED analysis in a systematic way



Deep Silicate features vs. heavy X-ray obscuration

IRAS-12um sample of Type 2 AGN with Spitzer/IRS coverage

N, from X-ray spectroscopy

Salvestrini et al., in prep.

Systematic multi-wavelength study of IRAS 12-
micron sample (X-ray, SED fitting, molecular gas
content, gas kinematics, etc.)

Effects of the AGN on the host galaxy

see also Alonso-Herrero+ works, Mateos et al. 2016, [...]
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Indications from X-ray observations of local Seyferts

that absorbers can be structured in clumps |

1.4

Eclipses of the X-ray source are
COMMON in nearby AGN:
ANy, ~ 10%3-10%* cm™
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size at 12um s, [pc]

High-resolution mid-IR observations of Seyferts
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Tristram+07 - Circinus

« Compact (a few pc) tori
with a clumpy/filamentary
dust distribution (warm
disk + geom. thick torus)

* No significant Sey1/Sey2
difference




Gaussian cloud distr. along the equatorial plane

Modeling the mid-IR emission with “clumpy” torus

v Type 1 vs. Type 2 AGN difference: it is a function of the number of
clouds along the line of sight, i.e., of the escape probability

v’ Same dust temperatures can be observed at different distances from the
AGN

=>» Type 2 AGN: larger number of clouds and lower P for the photons to
escape
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Mid-IR as a proxy of the nuclear (intrinsic) AGN power

» The mid-IR emission is mostly due to reprocessing (i.e., thermalized by dust) of
the intrinsic AGN emission.
The UV/optical emission in obscured AGN is extincted but re-emerges as IR

emission.

» Selecting sources extincted in the UV/optical and bright at mid-IR wavelengths
provides a good tool to pick up obscured sources.

» Stacking X-ray emission and consequent comparison with expected X-ray
emission provides an estimate on the amount of obscuration.



The combined optical/mid-infrared selection in the quest for
Compton-thick AGN at high-z (I)
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The combined optical/mid-infrared selection in the quest for
Compton-thick AGN at high-z ()
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The combined optical/mid-infrared selection in the quest for
Compton-thick AGN at high-z (1V)

MID-IR excess galaxies (Daddi et al. 2007)
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Log I-nuclear (12 “m)

Mid-IR vs. X-ray emission of AGN

Asmus et al. (2014); see also Lutz et al. (2004) and Gandhi et al. (2009)
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Multi-wavelength selection of AGN: pros and cons

Table 3 A multi-wavelength overview of AGN highlighting the different selection biases (weaknesses) and key capabilities (strengths)

Band Type Physics Selection biases/weaknesses Key capabilities/strengths

Radio, fr 2 1 mJy Jetted Jet Non-jetted sources High efficiency, no obscuration bias

Radio, fr < 1 mlJy Jetted and non-jetted Jet and SF Host contamination Completeness, no obscuration bias

IR Type 1 and 2 Hot dust and SF Completeness, reliability, host con- Weak obscuration bias, high effi-
tamination, no dust ciency

Optical Type 1 Disk Completeness, low-luminosity, High efficiency, detailed physics from
obscured sources, host contamination lines

X-ray Type 1 and (most) 2 Corona Very low-luminosity, heavy obscura- Completeness, low host contamina-
tion tion

y-ray Jetted Jet Non-jetted, unbeamed sources High reliability

Variability All (in principle) Corona, disk, jet Host contamination, obscuration, Low-luminosity

cadence and depth of observations

The definitions of some of the terms used in the bias and capability columns are as follows: Efficiency: ability to identify a large number of AGN with relative small total
exposure times (this is thus a combination of the nature of AGN emission and the capabilities of current telescopes in a given band). Reliability: the fraction of sources that
are identified as AGN using typical criteria that are truly AGN. Completeness: the ability to detect as much as possible of the full underlying population of AGN

from Padovani+17 review on AGN



galaxy/black hole/halo mass

A simplified picture of AGN evolution >

star-forming passive
[ ' 1 .- <
§ e i X-ray AGN - m :: IR AGN
5 i L |
§ 40 e . ‘
o - [ i
5 [ : | 1 L@ \g j
2 20F — s 1 2% ‘
A : IR AGN TN \
0L o P o, <
-4 3 -2 -1 0 -
10g(Lyo/Liso)
Hickox+09 2 R ‘
. . 8 N X-ray AGN
situation up to z~1 Goulding+14

<— 3w} 21WS0D

 All galaxies appear to begin as star-forming blue-cloud systems and end as passive red-sequence sources,
once their dark matter halos have grown sufficiently.

» Galaxies hosting IR, X-ray, and/or radio AGN appear to follow a similar evolutionary path: radiatively
efficient rapid BH growth (/:/X-ray AGN) appears to be linked with those galaxies with large supplies of
cool gas, while mechanically dominated (radio) accretion is associated with passive galaxies, which may
also be responsible for preventing late SF.
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Padovani+17
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Star formation
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“Stochastic” downward
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episode

High BHAR

Strong gravitational
instabilities
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Multi-wavelength signatures of AGN
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‘Optimization’ of AGN selection

UV-Optical-NIR

Obscuration

Photometry

Spectroscopy

X-rays
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AGN dominance

Hickox & Alexander 2018 (ARA&A)
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The final picture?
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The absorber/reprocessing material is most likely cloudy and filamentary
(e.g., Jaffe+04, Burtscher+13; Ramos-Almeida+11, Alonso-Herrero+, [...])
Combes+18 — ALMA results, tori are disk-like on scales of ~10-30 pc + resonant rings at 100-pc scales; AGN
non necessarily in the center



The quest for obscured AGN at different
cosmic times

Obscured SMBH growth as a key phase in AGN/galaxy life

Needs for a ‘complete’ AGN census

[——
| e— |

Combined mid-IR/opt/X-ray Optical spectroscopy

Integral a_nd_ Swift/BAT * Mid-IR/optical extreme colors + X-ray «  High-ionization narrow
surveys: limited spectroscopy/stacking emission lines as proxies of the
sensitivity, mostly low z + Based on mid-IR as a proxy of the AGN intrinsic nuclear emission
NuSTAR: more efficient strength * [Olspo7a: [N€Vlsgo64, ClV 5404
and sensitive, obscured +  Wide possibilities in the future due to a selection in the optical

AGN up to z~3 (a few) perfect combination of SPICA an Athena +  Similar probes in the mid-IR;
Deep X-ray Surveys capabilities [INeV114 3um: [0V, — Matter
(Chandra, XMM): up to for SPICA investigations at
high redshift, limited by high redshifts

photon statistics




COMMON ULTRAVIOLET/OPTICAL/NEAR-INFRARED SELECTION CRITERIA
FOR OBSCURED AGN

Commonly used criteria for identifying AGN in this waveband include:

B 3 high ratio of high-excitation to low-excitation emission lines;
B detection of very high-excitation emission lines (e.g., [Nev]); and
m UV, optical and/or near-IR colors characteristic of an AGN accretion disk.

Once AGN have been identified, common criteria for classifying the sources as obscured include:

® width of permitted emission lines <1,000 km s~!;
B high nuclear extinction from spectral analysis or multiwavelength SED fitting; a typical criterion is A > 5 mag;
and

® weak UV/optical/near-IR emission compared to AGN luminosity identified in other wavebands (e.g., X-ray,
mid-IR).

Hickox & Alexander 2018 (ARA&A)



COMMON X-RAY SELECTION CRITERIA FOR OBSCURED AGN

Commonly used criteria for identifying AGN in this waveband include:

® observed or intrinsic X-ray luminosity higher than expected for stellar processes (hot gas and X-ray binaries)
in the galaxy; a typical criterion is soft (0.5-10 keV) Ly > 10* erg s~!, which is sufficient for all but the most
extreme host galaxies; and

® jdentification of an X-ray point source in high-resolution imaging of the nucleus of the host galaxy (for nearby
galaxies, although note the caveats in Section 2.2).

Once AGN have been identified, common criteria for classifying the sources as obscured include:

® X-ray spectral fitting results implying Ny > 10** cm™2, or equivalent measurements using X-ray hardness
ratios;

B a Jow ratio of observed X-ray luminosity to intrinsic AGN luminosity (usually determined from IR or optical
data); and

® a high equivalent width of the Fe K« line.

Hickox & Alexander 2018 (ARA&A)



COMMON MID-INFRARED SELECTION CRITERIA FOR OBSCURED AGN

Commonly used criteria for identifying AGN in this waveband include:

® color diagnostics from mid-IR photometry;

® asignificant contribution of AGN to mid-IR emission, from measurement of features in the mid-IR spectrum
or fitting of AGN and galaxy templates to the mid-IR SED;

B detection of very high-excitation emission lines (i.e., [NeV], [Nevi]); and

B jdentification of a point source in high-resolution observations of a galactic nucleus (for nearby galaxies).

Once AGN have been identified, common criteria for classifying the sources as obscured include:

® red UV-optical-mid-IR photometric colors;

® high nuclear extinction (for example, Ay > 5 mag) from spectral analysis or optical/IR SED fitting; and

B detection of solid-state absorption features in the mid-IR spectrum (particularly the Si features at 9.7 and
18 um).

Hickox & Alexander 2018 (ARA&A)



COMMON FAR-INFRARED-RADIO SELECTION CRITERIA FOR OBSCURED AGN

Commonly used criteria for identifying AGN in this waveband include:

B asignificant AGN contribution from fitting of AGN and galaxy templates to the mid-IR—far-IR SED;

® a large ratio of high-excitation to low-excitation CO lines or the detection of dense gas tracers (i.e., HCN,
HCO™);

® 3 high observed radio power (i.e., P4 g, > 102 W Hz™");

® 3 flat radio spectral index; and

B an excess of radio emission beyond that predicted for star formation.

Due to low optical depth in the radio, most criteria to classify AGN as obscured rely on other wavebands after
identification in the radio, but one technique is the detection of absorption from neutral hydrogen determined
through the 21-cm line.

Hickox & Alexander 2018 (ARA&A)



