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Abstract We review the methods adopted to reconstruct the mass profiles in X-ray

luminous galaxy clusters. We discuss the limitations and the biases affecting these

measurements and how these mass profiles can be used as cosmological proxies.
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1 Introduction to the Clusters of Galaxies

It was in the early thirties that the role of a missing mass to explain the gravita-

tional effect observed in rich clusters of galaxies was highlighted from Zwicky (1933,

1937), opening the still-debated issue on how to relate their bounding mass to their

observables.

Since 1950s (Abell 1958, Zwicky et al. 1961-68, Abell et al. 1989), galaxy clusters

have been characterized from galaxies overdensities in the optical bands. Therefore, the

Richness in number of galaxies, the total luminosity of cluster galaxies Lopt, the velocity
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dispersion of member galaxies, and the shear and strong lensing features induced from

the mass distribution of intervening galaxy clusters on background galaxies have been

the tools to measure the mass and the distribution of galaxy clusters in systems at

relatively low redshift (z < 0.3; see, e.g., the MaxBCG catalog from the Sloan Digital

Sky Survey and the constraints it provided on the cosmological parameters in Rozo et

al. 2010).

At higher redshifts, the field galaxy population overwhelms galaxy overdensities

associated with clusters, in particular when a single filter is adopted for the detection.

An efficient way to counteract this effect is to observe in the near-infrared bands (>

1µm). The cores of the clusters of galaxies are dominated by red, early-type galaxies (at

least out to z ∼ 1.4). Moreover, being the number counts of the field galaxy population

flatter in the near-IR bands than in the optical, by moving to z, J, H, and K bands,

one can progressively compensate the strong K-correction and enhance the contrast

of (red) cluster galaxies against the background (blue) galaxy distribution (as clearly

demonstrated firstly by Stanford et al. 1997).

Another efficient technique to discover and characterize galaxy clusters is by map-

ping the distortion of the Cosmic Microwave Background spectrum due to the inverse

Compton scattering induced from the high-energy electrons present in the hot intra-

cluster medium (ICM). Clear detections of these features (named Sunyaev-Zeldovich SZ

effect; Sunyaev & Zeldovich 1972) occurred in the late 90s (see the review by Carlstrom

et al. 2002) and many surveys over wide areas of the sky have started to produce results

(e.g., the South Pole Telescope reported the first SZ-discovered clusters in Staniszewski

et al. 2009; the Atacama Cosmology Telescope has also recently reported their initial

catalog of SZ-discovered clusters in Marriage et al. 2011; the Planck collaboration has

presented the first sample of 189 high signal-to-noise clusters in January 2011 –Planck

Collaboration 2011). The integrated SZ signal, being proportional to the ICM pressure

along the line-of-sight, can be used as proxy of the total cluster mass.

In the X-ray band, the gas luminosity, temperature and mass are the direct observ-

ables used to infer the cluster total mass. X-ray observations occurred to be particularly

successful because galaxy clusters appear as well resolved extended emission with a to-

tal luminosity that is proportional to the square of the gas density (see next section).

X-ray detections have started in the 70s with Uhuru and HEAO-1 and provided well

defined samples thanks to the improved spectral and spatial resolution capabilities

available to the following generation of satellites, like Einstein (Gioia et al. 1990), EX-

OSAT (Edge et al. 1990), ROSAT (based both on the All-Sky Survey –e.g. Bright

Cluster Sample / BCS in Ebeling et al. 1998, the Northern ROSAT All-Sky Survey /

NORAS in Böhringer et al. 2000, the ROSAT-ESO flux limited X-ray / REFLEX 1 in

Böhringer et al. 2001, the Massive Cluster Survey / MACS in Ebeling et al. 2001, the

North Ecliptic Pole / NEP survey in Henry et al. 2001, the Highest X-ray flux Galaxy

Cluster Sample / HIFLUGCS in Reiprich & Böhringer 2002– and on archival pointed

PSPC observations –e.g. the RIXOS survey in Castander et al. 1995, the ROSAT Deep

Cluster Survey / RDCS in Rosati et al. 1998, the Serendipitous High-Redshift Archival

ROSAT Cluster survey / SHARC in Collins et al. 1997, the Wide Angle ROSAT Pointed

X-Ray Survey of clusters / WARPS in Scharf et al. 1997, the ROSAT Optical X-Ray

Survey ROXS in Donahue et al. 2001, the 400 deg2 survey in Burenin et al. 2007).

1 with 452 objects selected in the southern hemisphere with the nominal flux limit of 3 ×

10−12 erg/s/cm2 in the ROSAT energy band (0.1 − 2.4) keV, it is the largest compilation of
X-ray galaxy clusters to date.
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More recently, the new generation of X-ray observatories with improved sensitivity

and angular resolution, like XMM-Newton and Chandra, has allowed deeper studies of

the cluster emission both over large areas of the sky (e.g. XMM-Large Scale Structure

survey, Pacaud et al. 2007), and of serendipitous sources identified in public exposures

(e.g. XMM Cluster survey / XCS, Romer et al. 2001), and of previously known objects

(e.g. Vikhlinin et al. 2009, Mantz et al. 2010).

1.1 Galaxy clusters in the X-ray band

The primordial cosmic gas is composed by hydrogen (about 75 per cent by mass),

helium (∼ 24 per cent), and traces of other light elements, like deuterium, helium-3,

lithium and berillium. When this gas collapses into the dark matter halos typical of

galaxy clusters (> 1014M⊙), it undergoes shocks and adiabatic compression, reaching

densities of about 10−3 particles cm−3 and temperatures of the order of 108 K. The

density drops at larger radii r approximately as r−2. Hence, under these physical con-

ditions, the plasma is optically thin and in ionization equilibrium, where the ionization

and emission processes result mainly from collisions of ions with electrons (see details

in the reviews from Sarazin 1988, Peterson & Fabian 2006, Böhringer & Werner 2010).

The continuum intensity is the combination of 3 main processes:

1. Thermal bremsstrahlung (free-free emission; ǫ ∼ T 0.5
gas)

2. Recombination (free-bound)

3. Two-photon decay of metastable levels

Once the emission from collisionally excited lines (ǫ ∼ T−0.5
gas ) is considered, the total

X-ray emission is

ǫν =
∑

i

Λν(Xi, Tgas) n(Xi)ne (1)

where Λν(Xi, Tgas) is the cooling function that depends on the abundance of the ion

of the element Xi with density n(Xi) and ne is the electron density. At T > 3 × 107

K, where bremsstrahlung dominates, ǫ ∼ 4.4 × 10−27n2
eT

0.5
gas erg s−1 cm−3, whereas at

105 < T < 3 × 107 K, where line cooling is more relevant, ǫ ∼ 9 × 10−19n2
eT

−0.5
gas erg

s−1 cm−3.

The dependence of the emissivity upon the temperature in different energy window

of the observer’s frame is shown in Fig. 1. Note that the emissivity ǫ =
∫

ν
ǫνdν is almost

independent from the gas temperature in the soft X-ray band (e.g. 0.5–2 keV), where

also the signal-to-noise ratio is maximized because of the efficiency of the present X-

ray mirrors and detectors and of the properties of the cosmic and particle background

(see discussion in, e.g. Ettori & Molendi 2011). At a given electron temperature T ,

the continuum intensity is proportional to the emission measure EM =
∫

nenHdV .

The line intensity depends on nenX, where X is a given heavy element. The line-to-

continuum ratio is thus proportional to the metallicity of the ICM, nX/nH = Z.

Such physical processes produce photons that are registered as, e.g., counts on

the CCDs, in the case of Chandra or XMM-Newton exposures. These “events” are

registered in a file that is first processed along with the calibration files to select only

the events defined good accordingly to both the time when they have been registered

and their properties. After this cleaning process, the file contains all, and only, the

events that can be used to do science as a function of time, position on the sky, energy.
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Fig. 1 (Left) Total dependence of the emissivity upon the temperature in different energy
window [bolometric, 2-10 keV, 0.5-2 keV] and for a cluster whose temperature ranges between
2 and 15 keV (where the bremsstrahlung emission dominates) at redshift 0.1. The curves are
calculated using a MEKAL model (Kaastra 1992, Liedahl et al. 1995) in XSPEC (Arnaud
1996) for two different values of metallicity: 0.3 (thickest symbols) and 1.0 times the solar
abundance as in Anders & Grevesse (1989). They are normalized to the bolometric emissivity
at Tgas = 15 keV with Z = 1Z⊙. When the free-free radiation dominates, these curves can
be calculated analytically integrating over the window energy [E1 − E2] the Gaunt factor,

assumed equal to 0.9(E/kT )−0.3, multiplied by (kT )−0.5e−(E/kT ). (Right) Relation between
the shells and the rings in the geometrical deprojection (for details see, e.g., Fabian et al.
1981, Kriss et al. 1983, McLaughlin 1999, Buote 2000, Ettori et al. 2002). Defined Vij as
the amount of the volume, Vi, of the shell i observed through the ring j adopted in the
spectral/spatial analysis, a flux Fj is measured and modelled in each radial ring with area Aj

as Fj =
∑

i,shell
ǫiVij/Aj =

∑

i,shell
n2
iΛ(Ti)Vij/Aj , where ǫi is the emissivity in shell i, ni

is the gas density and Λ(Ti) is the cooling function.

By projecting along one of these axes, one can create light curves (photon counts vs

time), images (counts vs sky position), spectra (counts vs energy; see, e.g., Fig. 2).

An X-ray emitting source is characterized by its count-rate (cts/s) at the detec-

tor that is converted to an un-absorbed flux given a source spectrum, an instrument

response and a model for the absorption due to our Galaxy, and then in luminosity,

once the distance is known. Given the flux (i.e. the luminosity divided by 4πd2lum –see

eq. 14– and multiplied by the K-correction factor that depends mainly on the temper-

ature of the source and converts the flux observed in a given energy band to a quantity

in the rest-frame of the object), the surface brightness is then the flux divided by the

area covered from the emitting source.

The spatial and spectral analyses in the X-ray waveband provide, thus, the obser-

vational tools needed to describe the physical state of the ICM.

As we discuss in the following sections, present observations provide routinely rea-

sonable estimates of the gas density, ngas, and temperature, Tgas, up to about R2500

(≈ 0.3R200; R∆ is defined as the radius of the sphere that encloses a mean mass den-

sity of ∆ times the critical density at the cluster’s redshift; R200 defines approximately

the virialized region in galaxy clusters). Only few cases provide meaningful measure-

ments at R500 (≈ 0.7R200) and beyond (e.g. Vikhlinin et al. 2005, Leccardi & Molendi

2008a, Neumann 2005, Ettori & Balestra 2009, Eckert et al. 2012; see Reiprich et al. in

the present volume). Consequently, more than two-thirds of the typical cluster volume,

just where primordial gas is accreting and dark matter halo is forming, is still unknown

for what concerns both its mass distribution and its thermodynamical properties. In-
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deed the characterization of thermodynamic properties at large radii would allow us

to provide constraints on the virialization process and, thus, to improve significantly

the measures of the gas and total gravitating masses. This is one of the main request

for a more accurate use of galaxy clusters as cosmological probes.

1.2 Surface brightness and gas density profiles

Few tens of counts are needed to have a detection and to estimate the gas density

through the observed surface brightness, whereas few thousands of net counts are

required to measure properly Tgas. The X-ray surface brightness is thus a quantity much

easier to characterize than the temperature and it is still rich in physical information

being proportional to the emission measure of the emitting source.

In detail, the observed surface brightness profile, Sb, at the projected radius rp is

the projection on the sky of the plasma emissivity ǫ(r),

Sb(rp) =

∫ ∞

r2p

ǫ(r) dr2
√

r2 − r2p
. (2)

The gas density is obtained either from the deprojection (see right panel of Fig. 1)

or from the modelling of Sb. For instance, assuming isothermality and a β-model for

the gas density (ngas = n0,gas(1 + x2)−3β/2 where x = r/rc and rc is the core radius;

Cavaliere & Fusco-Femiano 1976, Sarazin & Bahcall 1977), the surface brightness profile

has an analytic solution:

Sb =
√
πn2

0rcΛ(Tgas)
Γ (3β − 0.5)

Γ (3β)
(1 + x2)0.5−3β

= S0(1 + x2)0.5−3β , (3)

that is strictly valid under the condition that 3β > 0.5 and that the cooling function

Λ(Tgas) does not change radially. This functional form has only 3 free parameters

(S0, rc, β) that can be fitted to the observed surface brightness profile to provide

a direct characterization of the gas density. Thanks to the higher sensitivity of the

present detectors, more complex, and therefore flexible, description of the profile of

the electron density can be adopted. For example, we can combine few power-laws and

β−models and use up to 10 free parameters to model the square of the electron density,

that defines the integrand of the emission measure, as n2
e = n2

0x
−α(1 + x2)α/2−3β(1 +

xγs )ǫ/γ + n2
02(1 + x22)−3β2 (Vikhlinin et al. 2006).

Sb has been successfully parametrized through the use of one or more β−model

and is now routinely deprojected to recover the gas density profile (e.g. Mohr et al.

1999, Ettori & Fabian 1999). The use of a second β−model allows, for instance, to

properly trace the gas distribution in the cooling core of X-ray bright objects 2. Mohr

et al. (1999) presented a systematic analysis of the ICM surface brightness in a sample

2 Galaxy clusters where the cooling has been the most effective thermodynamical process in
defining the properties of the X-ray emitting central region, like a decreasing temperature and
a rising gas density and metallicity moving inwards, are defined as cool core (CC) objects and
are generally considered as the most relaxed systems. For a recent discussion on the properties
of CC, and NCC, clusters see Rossetti & Molendi 2010, Hudson et al. 2010, Ettori & Brighenti
2008 and references therein.
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Fig. 2 Examples of X-ray spectra. From left to right, top: (i) model of the X-ray emission
associated to a 5 keV cluster with bolometric LX = 6× 1044 erg/s at z = 0.1; (ii) the model is
convolved with the response of a CCD instrument; (iii) spectrum as a function of the rest-frame
energy. Bottom: changing some input values, from 0 to 5× 1020 cm−2 in galactic absorption;
from 0.3 times solar to 0 in the ICM metalliticy; from 5 to 10 keV.

of 45 local systems observed with ROSAT PSPC. In reconstructing the ICM proper-

ties, they addressed several systematic uncertainties, including Poisson noise, choice of

cluster emission center, PSF blurring, X-ray background subtraction, ICM temperature

uncertainties, luminosity uncertainties, and cool gas associated with central cooling in-

stabilities. Overall, the most significant errors are induced from very asymmetric X-ray

images for which a proper centering becomes problematic (like recent merger systems

as Abell754, where they observed a change in the gas mass by 16%), biases in the back-

ground subtraction (deviation by 4%), and PSPC absolute flux calibration (implying

uncertainties on Mgas of about 7.5%). The fit with a β−model provides results that

are strongly correlated in the {core radius, β} plane, with typical values (minimum,

maximum, median; after the exclusion of the very peaked emission of Cygnus-A) of

rc = (0.03, 0.47, 0.17)h−1
70 Mpc and β = (0.56, 1.0, 0.78). Similar values are obtained

also at higher redshifts (0.4 < z < 1.3), with median rc of ∼ 0.15h−1
70 Mpc and β

between 0.63 and 0.78 (Ettori et al. 2004).

In general, a β−model provides a good representation of the cluster regions outside

the core once the β value is permitted to increase from ∼ 0.65 to about 0.9 at the

virial radius, as consequence of the radial steepening of the gas density profile (see

e.g. Eckert et al. 2012). Other analytical descriptions of the gas density radial profile

which follow the behaviour of a β−model at large radii, and that is then integrated

numerically to recover a surface brightness model, are described in, e.g., Ettori, Fabian

& White (1998), Pratt & Arnaud (2002).

1.3 Temperature and metallicity profiles

The gas temperature is estimated from the spectrum continuum intensity (Fig. 2).

Early attempts to produce temperature profiles were made with the ROSAT PSPC,

these were mostly limited to low mass systems (e.g. David et al. 1996) where the tem-

peratures were within reach of the PSPC soft response. Resolved spectroscopy of hot
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Fig. 3 From left to right (i) Stacked emission measure profile (in units of cm−6 Mpc) for
the entire sample of 31 nearby galaxy clusters observed with ROSAT PSPC (black), the Cool
Core systems only (red) and the Non-Cool-Core objects only (blue). From Eckert et al. (2011).
(ii) Mean temperature profiles obtained from Leccardi & Molendi (2008a; LM08, black circles),
De Grandi & Molendi (2002; DM02, blue squares), Vikhlinin et al. (2005; V05, red upward
triangles) and Pratt et al. (2007; P07, green diamonds). All profiles are rescaled by kTM and
R180. The dashed line shows the best fit with a linear model beyond 0.2 R180 and is drawn
to guide the eye. The LM08 profile is the flattest one. (iii) Mean metallicity profiles obtained
from Leccardi & Molendi (2008b; LM08, circles), De Grandi et al. (2004; DM04, triangle) and
Baldi et al. (2007; BA07, squares). Abundances are expressed in Anders & Grevesse (1989)
solar values.

systems began with the coming into operation of ASCA (1994) and BeppoSAX (1996).

Both missions enjoyed a relatively low instrumental background, which was a consid-

erable asset when extending measures out to large radii, however they both suffered

from limited spatially resolution. The situation was somewhat less severe with the

BeppoSAX MECS than with the ASCA GIS since the former had a factor of 2 bet-

ter angular resolution and a modest energy dependence in the PSF. These difficulties

led to substantial differences in temperature measures. On the one side, Markevitch

et al. (1998) using ASCA and De Grandi & Molendi (2002) using BeppoSAX MECS

found evidence of declining temperature profiles, while, on the other, White (2000)

using ASCA and Irwin et al. (1999) using BeppoSAX data found flat temperature

profiles. The situation was somewhat clearer on abundance profiles were workers us-

ing ASCA (e.g. Finoguenov et al. 2000) and BeppoSAX data (De Grandi & Molendi

2001) consistently found evidence that cool core (CC) systems featured more centrally

peaked profiles than NCC system. The coming into operation of the second generation

of medium energy X-ray telescopes, namely XMM-Newton and Chandra, both char-

acterized by substantially better spatial resolution, allowed more direct measures of

the temperature profiles. The new Chandra (Vikhlinin et al. 2005) and XMM-Newton

measurements (e.g. Pratt et al. 2007, Snowden et al. 2008) confirmed the presence of

the temperature gradients measured with ASCA and BeppoSAX. In a detailed study

of a sample of 44 objects observed with XMM-Newton, Leccardi & Molendi (2008a)

found that temperature measurements could be extended out to about 0.7R180 (see

Fig. 3).

Unfortunately the high orbit of the XMM-Newton and Chandra satellites, as well as

the fact that the design of the satellites was driven by scientific objectives other than

the characterization of low surface brightness regions, led to a substantially higher and

more variable background than with the previous satellite generation, thereby limiting

the exploration of the temperature and metal abundance profiles to roughly the same

regions already investigated with ASCA and BeppoSAX (see Fig. 3). Recently measures
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of temperature profiles have been made with the Suzaku X-ray imaging spectrometer

(XIS), which benefits from the modest background associated to the low earth orbit but

suffers from broad and position-dependent PSFs with their typical half-power diameter

(HPD) of about 110 arcsec. These measurements extend beyond the regions explored

with Chandra and XMM-Newton, even though only parts of the outermost annuli are

explored and both radial bins and error bars on temperature measurements are still

quite large (see more details and results in Reiprich et al. in the present volume).

Moreover, it has been proved (e.g. Leccardi & Molendi 2007) that the measure of

the ICM temperature from an X-ray thermal spectrum extracted from these regions

at low surface brightness and in a hard energy band (> 2 keV) is biased by the use

of commonly adopted estimators, such as those based on χ2 and Cash statistics. An

a-posteriori correction can be needed to provide more reliable and robust results.

2 Total mass, gas mass & systematics

To evaluate the cluster total mass through X-ray observations, one needs to assume that

the gas is in hydrostatic equilibrium with the gravitational potential. This assumptions

relies on the facts that (i) the gas can be treated as a collisional fluid (in general, the

time scales of any heating and/or cooling and/or dynamical process is much longer than

the elastic collisions time for ions and electrons, allowing the ICM to be represented

by a single kinetic temperature; the mean free paths of electrons and ions, determined

by Coulomb collisions, are thus shorter than the length scales of interest in galaxy

clusters, i.e. tCoulomb << tcooling ∼ theating); (ii) a sound wave crosses the ICM in a

time shorter than the age of the cluster itself, i.e. tsound < tage, where:

tCoulomb ∼ 0.02 T
3/2
gas n−1

gas Gyr

tcooling ∼ 35 T
1/2
gas n

−1/2
gas Gyr

tsound ∼ 4.4 T
−1/2
gas RMpc Gyr

tage ∼ H−1
0 ∼ 13.6 Gyr, (4)

where Tgas is measured in keV and ngas in 10−3 atoms per cm3.

Satisfied these conditions, the Euler’s equation for an ideal fluid (i.e. a fluid in

which thermal conductivity and viscosity do not play a relevant role) in a gravitational

potential φ and with a velocity v, pressure Pgas and density ρgas is (Landau & Lifshitz

1959; Suto et al. 2013)

∂v

∂t
+ (v · ∇)v = − 1

ρgas
∇Pgas −∇φ. (5)

Setting to zero the velocity of the gas and assuming a spherically-symmetric distribu-

tion of the gas, we ca write the hydrostatic equilibrium equation (HEE) of the ICM

as
1

ρgas

dPgas

dr
= −dφ

dr
= −GMtot

r2
, (6)

where G is the gravitational constant and the gas mass density and pressure are related

through the perfect gas law, Pgas = ρgas kTgas/(µmu) = ngas kTgas, mu = 1.66×10−24

g is the atomic mass unit, and µ is the mean molecular weight in a.m.u. and is equal to
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≈ (2X + 3/4Y + 1/2Z)−1 ∼ 0.6, where X, Y and Z are the mass fraction in hydrogen,

helium and heavier elements, respectively.

The total mass of X-ray luminous galaxy clusters can be estimated by solving

equation 6. We can rewrite it as a function of the gas density and temperature profiles,

that are the quantities observed directly:

Mtot(< r) = −kTgas(r) r

µmuG

(

∂ log Tgas
∂ log r

+
∂ log ngas

∂ log r

)

. (7)

It is useful to represent a galaxy cluster as a spherical region with a radius R∆ and

a mean overdensity ∆ with respect to the critical density at the cluster’s redshift z,

ρc,z = 3H2
z/(8πG) with Hz = H0E(z) (see eq. 13):

Mtot(< R∆) =
4

3
π∆ρc,zR

3
∆. (8)

The collapsed structure associated to a galaxy cluster is defined at ∆ = 200, whereas

the regions that can be routinely proved with X-ray observation are typically at lower

radii (∆ ∼ 500) (see discussion in the previous section and Fig. 5). The mass of the

gas within R∆ is defined as

Mgas(< R∆) =

∫ R∆

0

µemune(r) 4πr2dr, (9)

where ne(r) is the electron number density (ngas is the sum of the electron and proton

densities ne + np ≈ 1.826ne), µe = ρgas/(ne mu) = 1.155 is the value associated to a

cosmic mix of hydrogen and helium with 0.3 times solar abundance in the remaining

elements with a relative contribution that follows Grevesse & Sauval (1998)3, µ = 0.6

is the corresponding mean molecular weight, mu is the atomic mass unit. The gas mass

fraction is then fgas(R∆) = Mgas(< R∆)/Mtot(< R∆).

When the gas density is assumed to be well described by a β−model and presents

a polytropic dependence upon the gas temperature, Tgas ∝ ργ−1
gas with 1 ≤ γ ≤ 5/3,

the total gravitating mass is:

Mtot(r) =
3 βγ T0 rc
Gµmu

x3

(1 + x2)B

= 6.728 × 1013
βγT0rc

µ

x3

(1 + x2)B
M⊙, (10)

where the exponent B = 1.5β(γ − 1) + 1, T0 is the central temperature in keV, rc the

core radius in Mpc, µ is the mean molecular weight in a.m.u. and the numerical values

include the gravitational constant G, the mass of the atomic mass unit mu and all the

unit conversions. This method to determine mass distributions has been applied firstly

by Bahcall and Sarazin (1977) and Mathews (1978) and, then, developed extensively

by Fabricant et al. (1980, 1984), Fabricant and Gorenstein (1983) and extended to

3 The solar photospheric abundance in Anders & Grevesse (1989) have been revised to match
the meteoritic determinations, as summarized in Grevesse & Sauval (1998; see further redeter-
minations in Asplund et al. 2009), and require conversion factors of (0.676, 0.794, 1, 1.321, 1)
to correct the original photospheric abundance for Fe, O, Si, S and Ni, respectively. However,
the Anders & Grevesse values are still largely adopted in the X-ray clusters community for
consistency with previous observational constraints.
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Fig. 4 (left) Scaled density profiles of the REXCESS sample (Croston et al. 2008). Using a
non-parametric regularised method (Croston et al. 2006), the X-ray surface brightness profile
extracted in the low energy band, where the signal-to-noise is higher, is PSF-corrected and
deprojected into 3D emission measure profiles. Conversion to a gas density profile is under-
taken using the emissivity profile in the energy band under consideration, taking into account
the observed temperature profile. (Middle) Temperature profiles of the REXCESS sample
from Pratt et al. (2007) normalized to the mean temperature estimated for each cluster. The
derived temperature profiles are then deconvolved from the PSF blurring and deprojected
into 3D physical profiles. An analytical functional is then chosen to represent the cluster 3D
temperature profile. The deprojected 3D density and temperature profiles are applied to the
hydrostatic mass equation (see Democles et al 2010 for details). (Right) Scaled mass profiles
from 10 relaxed nearby clusters observed with XMM-Newton (from Pointecouteau et al. 2005).
As for the temperature profile, a Monte Carlo method is used to derive the errors in each bin
were the 3D mass profile is computed, with the prior that cumulative radial 3D mass profile
are monotonically increasing. The observed mass profiles can then be fitted by a chosen mass
model.
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Fig. 5 (Left) The Binney & Tremaine (from equation 4-125 in Binney & Tremaine 1987) dark
matter profile for the self-gravitating isothermal sphere is here compared for different input
parameters, [σ (km s−1), rc (or rs, Mpc)], to the Navarro-Frenk-White (NFW, 1997) profile
that comes from extended and highly resolved numerical simulations of clusters of galaxies.
Both of these are also compared with the King’s approximation (King 1962) to the inner part
of the self-gravitating isothermal sphere. All of them are normalized to the central value of the
self-gravitating isothermal sphere profile [ρ0 = 9σ2/(4πGr2c ) = 9.05 × 10−26 g cm−3]. Inside
the core radius, the NFW profile does not flatten like the BT profile. In the outer part of the
region of interest (above 1 Mpc), agreement between the two profiles is obtained by increasing
the velocity dispersion and the core radius (or scale radius) in the NFW profile. Fitting a
power law, it can be shown that around 2.5× rs ∼ 2 Mpc the NFW profile approaches a r−2.4

form. (Right) Cumulative fraction of the mass enclosed within the radius r/rs for a NFW
profile and assigned concentration of 4, typical for a massive galaxy cluster. Radii at different
overdensities are shown (f.i., the mass enclosed within R500 is about 70% of MNFW at R200).

the polytropic case by Henriksen & Mushotzky (1986; see also Cowie, Henriksen &

Mushotzky 1987, Hughes et al. 1988, Ettori 2000).

Nowadays, a more detailed analysis of the gas density and temperature profiles

has allowed to refine the method for the X-ray mass reconstruction. X-ray surface

brightness profiles corrected for vignetting effects are extracted in the low energy band,

e.g. [0.5-2.0] keV. Assuming the cluster spherical symmetry, and chosing the X-ray

brightness peak as the cluster centre, profiles are binned from the event files. The

X-ray surface brightness profile are generally PSF-corrected and deprojected into 3D

emission measure profiles (e.g. Fabian et al. 1981, Buote 2000, Croston et al. 2006

where a non-parametric regularised method is described; see Fig. 4 and 6). Conversion

to a gas density profile is undertaken using the emissivity profile in the energy band

under consideration, taking into account the observed temperature profile (note that

the emissivity is weakly temperature dependent for T > 2 keV). The gas density profile,

ngas, can thus be estimated from the geometrical deprojection of either the measured

X-ray surface brightness or the estimated normalization of the thermal model fitted

in the spectral analysis (see Fig. 6). Temperature profiles are derived from spectra

extracted in concentric annuli and modeled with a hot diffuse gas including metals

emission lines (e.g. MEKAL or APEC model in XSPEC; Mewe et al. 1985, Arnaud et

al. 1985, Smith et al. 2001). The measured temperature profiles are then deconvolved

from the PSF blurring and either deprojected into 3D physical profiles or modeled with
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Fig. 6 Procedure to reconstruct the mass profile of Abell1835 (from Ettori et al. 2010). (Top,
left) Surface brightness profile in the 0.7−1.2 keV band (black filled circles) of Abell1835 com-
pared with the profiles of the background components: the instrumental component (NXB;
green), the photon component (CXB + galactic foregrounds; blue) and the total background
(sky + instrumental; red). (Top, right) PSF–corrected background–subtracted surface bright-
ness profile. Abell1835 is one of the objects with the largest smearing effect due to the combi-
nation of the telescope’s PSF and the centrally peaked intrinsic profile. (Bottom, left) Gas
density profile as obtained from the deprojection of the surface brightness profile compared to
the one recovered from the deprojection of the normalizations of the thermal model in the spec-
tral analysis; observed temperature profile with overplotted the best-fit temperature model.
(Bottom, right) Constraints in the rs−c plane on the best-fit mass model with the prediction

(in green) obtained by imposing the relation c200 = 4.305/(1+z)×
(

M200/1014h−1
100M⊙

)−0.098

from Macciò et al. (2008).

a functional form in 3D projected on the plane of the sky to reproduce the observed

quantities.

Three methods, essentially, are adopted to solve the equation of the hydrostatic

equilibrium under the assumptions of spherical symmetry. We refer to them as (i)

observables-modelling ≡ fully parametric ≡ forward process; (ii) mass-modelling ≡
semi-parametric ≡ backward process; (iii) non-parametric ≡ model-independent ap-

proach. The arguments in favor (pros) and against (cons) each method are summarized

at the end of the dedicated section (see below).
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(i) observables-modelling ≡ fully parametric ≡ forward process. Paramet-

ric functions are used to model the gas density and temperature radial profiles

through the observed surface brightness and spectral temperature data and, then,

propagated through the HEE to derive the total mass profile (e.g. Lewis et al.

2003, Buote & Lewis 2004, Pointecouteau et al. 2005; see e.g. Fig. 4). The most

recent implementation of it (as, e.g., in Vikhlinin et al. 2006; Nagai et al. 2007

for tests of the technique with high-resolution numerical simulations) models the

observed X-ray surface brightness profile with a modified and extended version of

the β−model and the projected temperature profile with a two-component ana-

lytic function, one to reproduce the decline (if any) in the cooling region and the

other to describe the slowly negative gradient outwards by a broken power-law

with a transition region. Uncertainty intervals for all quantities of interest are

generally obtained from the distribution of best-fit parameters produced from

thousands of Monte Carlo simulations, in which the full analysis is repeated on

simulated data generated by scattering the observed values of the brightness and

temperature profiles accordingly to the measured errors.

The mass profile in eq. 10 is a particular application of this fully parametric

method that relies on the β−model to describe the gas density and on a poly-

tropic relation between gas density and temperature; a more simplistic assump-

tion would require an isothermal gas that could be a convenient approximation

for low-quality data, as objects at high−z, where few hundreds of source counts

are available and a single temperature measurement is feasible and just a fit with

a single β−model can be performed on the surface brightness profile.

(Pros) The profiles of the observed quantities are, by definition, smooth and

derivable; (cons) the radial shape is imposed and, often, being many parameters

available (e.g. Vikhlinin et al. 2006: 10 parameters to model ngas(r), 9 for Tgas(r)),

strong degeneracy occurs among them, forcing to freeze/constrain some of them

to provide a physical solution on the mass profile;

(ii) mass-modelling ≡ semi-parametric ≡ backward process. A functional

form of the gravitational potential is adopted and used in the HEE with, e.g., the

geometrical deprojection of the surface brightness profile to recover a temperature

profile that is fitted to the observed one to minimize a merit function that depends

just on the parameters describing the mass model. These parameters are stepped

over a grid of values and the best-t values, and uncertainties, determined via χ2

minimization techniques. For instance, the two parameters (rs, c200) describing a

NFW profile (that is an approximation to the equilibrium configuration produced

in simulations of collisionless DM particles; see a comparison with the King’s ap-

proximation to the isothermal sphere in Fig. 5) are constrained by minimizing a

χ2 statistic defined as

χ2
T =

∑

i

(

Tdata,i − Tmodel,i

)2

ǫ2T,i

(11)

where the sum is done over the annuli of the spectral analysis; Tdata are the ei-

ther deprojected or observed temperature measurements obtained in the spectral

analysis; Tmodel are either the three-dimensional or projected values (following

e.g. the recipe in Mazzotta et al. 2004) of the estimates of Tgas recovered from

the inversion of the hydrostatic equilibrium equation (see eq. 6) for a given gas

density and total mass profiles; ǫT is the error on the spectral measurements. The
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gas density profile, ngas, is estimated from the geometrical deprojection of either

the measured X-ray surface brightness or the estimated normalization of the ther-

mal model fitted in the spectral analysis (see Fig. 6). This technique has been

developed initially as part of the Cambridge X-ray deprojection code (e.g. White,

Jones & Forman 1997; Schmidt & Allen 2007), then extended to only spectral

data in Ettori et al. (2002) and is now adopted to recover the mass profiles in

recent X-ray studies of both observational (e.g. Morandi et al. 2007, Allen et al.

2008, Donnarumma et al. 2009) and simulated datasets (e.g. Rasia et al. 2006,

Meneghetti et al. 2010) against which it has been thoroughly tested. Mahdavi et

al. (2007), with the purpose of providing a joint-analysis of cluster observations

at different wavelengths using X-ray, SZ and lensing data allowing to conduct a

full, covariant error analysis on all the physical parameters, introduce a method

in which the gravitational potential is composed separately from the gaseous,

stellar, and dark matter components each of which is modeled with a functional

form (e.g. a triple β−model for the gas density and a NFW for the dark mass).

For what concerns the X-ray analysis, an X-ray spectrum is recovered from the

parametrized total mass and gas density profiles combined through the HEE, pro-

jected on the sky, distorted with a point-spread-function and convolved with the

X-ray instrument response function to constrain, finally, the best-fit parameters

with a statistical fitting of the observed counts.

(Pros) The gas density is obtained from direct deprojection of the surface bright-

ness profile and no parameters are needed to model the gas temperature profile;

the only parameters required are the 2–3 requested to constrain the functional

form of the mass profile; unlike the forward one, this method does not use para-

metric fitting functions for the X-ray temperature, gas density or surface bright-

ness in measuring the mass that might introduce strong priors affecting the inter-

pretation of results and, in particular, leading to possible underestimation of the

uncertainties (see, e.g. Mantz & Allen 2011) (cons) the observed radial profiles

of the gas density and temperature are often not smooth enough, causing the

derivatives to be problematic;

(iii) non-parametric ≡ model-independent approach. The HEE is solved by us-

ing directly the best-fit results on gas temeprature and density of the deprojected

spectra (as in the pioneering work by Nulsen & Böhringer 1995 on the Virgo

cluster; see also Nulsen et al. 2010; Arabadjis et al. 2002 and 2004; Ettori et al.

2002; Voigt & Fabian 2006).

(Pros) The only working assumptions are that, in each spherical shell in which

the cluster volume is divided, the gravitating matter density is constant and the

gas is isothermal; there are not specific requests on the form of the profiles of

either the total mass or the gas density and temperature, even though, being

the gravitating mass free to move between adjacent shells with little impact on

the fit, performance of the method can be improved significantly by requiring the

gravitating matter density to be a monotonically decreasing function of the radius.

This should result in smoother mass profiles and reduces confidence intervals for

the mass. As discussed in Nulsen et al. (2010), a model-dependent prior, such as

the assumption that a cluster potential has the NFW form, can reduce further

the uncertainties on the recovered mass estimates. Moreover, considering that

the mass can be determined directly in terms of parameters used to fit the X-ray

data, error propagation is more flexible. (Cons) Due to the lack of assumptions

on the radial shape of any component, results are less tight and stable than the
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ones obtained from the above-mentioned methods, and definitely limited only to

the regions with high signal-to-noise ratio in the X-ray counts. For instance, for

a sample of 8 local massive galaxy clusters, Nulsen et al. (2010) find an average

range (measured in log space at 90% confidence level) on the mass estimates of

about 2.3, that is about 70 per cent higher than the relative errors evaluated with

the model-dependent technique in Vikhlinin et al. (2006).

In brief, the fully/semi parametric processes rely on functional formulae for

the radial distribution of temperature, surface brightness, or mass that reproduce well

the observed and simulated properties of X-ray luminous galaxy clusters. The greatest

advantage of a parametric treatment is the numerical stability, in particular when a

derivative must be computed as in the case of the estimate of the gravitating mass pro-

file. A drawback of these approaches is that (i) it is difficult to quantify the effect of the

parameterization on the results when strong intrinsic degeneracies among the parame-

ters are present; (ii) it is often a cumbersome and computationally-expensive problem

to propagate properly the errors from the observed quantities (like the spectrally-

determined values of temperature and density) to the estimates of the gravitational

mass.

In the following sub-sections, we discuss how the estimated mass via the X-ray

technique compares to the reconstructed values obtained through the gravitational

lensing (see reviews of Hoekstra et al., Meneghetti et al., Bartelmann et al. in the

present volume) and the application of the virial theorem and of the caustic method

on the optically determined distribution of the galaxies in clusters. In section 2.3, we

revise recent studies on the the systematic uncertainties affecting the X-ray estimates

of Mtot and Mgas.

2.1 Comparison between X-ray and lensing mass estimates

We will here briefly review some of the most significant recent results on the comparison

of galaxy cluster mass measurements obtained with X-ray and lensing analyses.

In the context of the LoCuSS (Local Cluster Substructure Survey) project, Zhang

et al. (2008) have studied the archival XMM-Newton exposures of 37 objects in the

redshift range 0.14–0.3, 19 of which with weak lensing mass measurements available in

the literature. They conclude that, at the same R500, weak lensing masses are higher by

9(±8) per cent than X-ray masses. In a following work, Zhang et al. (2010) compare the

hydrostatic masses estimated for 12 galaxy clusters from XMM-Newton observations

with the weak lensing mass estimates obtained from large field of view Suprime-CAM

camera i′- and V -band imaging data at the Subaru telescope. The background galaxy

catalog was selected by considering only faint galaxies with colors that are redder

and bluer (by a minimum color offset) than the red-sequence of cluster galaxies. At

R500, they measure MX/MWL = 0.99 ± 0.07 for the whole sample, MX/MWL =

0.91 ± 0.06 and 1.06 ± 0.12 (errors at 68% confidence level) for the undisturbed (5

objects) and disturbed (7 objects, including A1914, the most extreme of the disturbed

systems) samples, respectively, as defined by analyzing the cluster X-ray morphology.

They claim that the discrepancy between the X-ray hydrostatic and the weak lensing

masses for the undisturbed sample can be explained with an additional non-thermal

pressure support, while they state that the (in)consistency between the X-ray and

the weak-lensing masses for the disturbed cluster sample is more difficult to assess,
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Fig. 7 Comparison between X-ray and weak lensing mass determinations from recent work
based on both observed (Zhang et al. 2010, Mahdavi et al. 2013) and simulated (Meneghetti
et al. 2010; Rasia et al. 2012, both as obtained from mock X-ray catalogs and directly from
simulations -labelled “intr”) datasets. This figure is adapted from Table 5 in Rasia et al.
(2012). Relaxed refers to systems with either a not-disturbed X-ray morphological appearance
or a relatively low level of the gas entropy in their cores.

due to large scatter in the mass results for this subsample. However, they note that

a competing effect associated with adiabatic compression and/or shock heating could

lead to overestimate X-ray hydrostatic masses for disturbed galaxy clusters. In the

undisturbed sample, they also detect an improving agreement between MX and MWL

as a function of increasing over-density, MX/MWL = (0.908±0.004)+(0.187±0.010) ·
log10(∆/500), as expected.

Following a similar approach, Mahdavi et al. (2008) perform a uniform analysis of

Chandra X-ray data and CFHT weak lensing data for a sample of 18 galaxy clusters.

The authors find an excellent agreement between lensing and X-ray mass estimates at

R2500, with the ratio MX/ML between X-ray and lensing masses being 1.03 ± 0.07.

Conversely, they observe a significant decrease in the X-ray to lensing ratio when larger
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radii are considered (MX/ML = 0.78 ± 0.09 at R500), that becomes significant at 3σ

when accounting for correlations between the mass estimates. Even correcting for a

systematic overestimate of the weak lensing masses due to correlated large scale struc-

tures, the trend persists. It appears to be consistent with hydrodynamical simulations

of galaxy clusters in which non-thermal pressure support is present, thus causing a

systematic underestimate of the X-ray cluster mass not correlated with the presence

or absence of a cool core.

Recently, Mahdavi et al. (2013) have extended the previous work to 50 massive

systems, also including XMM-Newton exposure combined with the Chandra ones. They

conclude that hydrostatic masses underestimate weak lensing masses by 10 per cent, on

average, at R500 as determined from weak-lensing analysis. However, cool-core clusters,

characterized by a more relaxed dynamical state, are consistent with no bias, while

non-cool-core clusters have a large and constant bias of about 15–20 per cent between

∆ = 2500 and 500. They also find that the bias correlates well with the ellipticity of

the Brightest Central Galaxy.

Overall, independent analyses of samples of galaxy clusters show that some tension

between X-ray and (mostly weak) lensing mass estimates appears at lower overdensities

(see Fig. 7) in more disturbed objects, where the disturbance is here mainly charac-

terized through X-ray analyses (like, e.g., evidence of centroid shifts and increasing

values of the power-ratios at greater multipoles in the X-ray surface brightness; see,

e.g., Böhringer et al. 2010, Cassano et al. 2010). On the contrary, when the comparison

is performed on a given object with data that overlap in the radial distribution, the

differences tend to be within the statistical error, in particular when the object in exam

is round in its X-ray appearance and dynamically relaxed or, at least, with no major

merging in action (see, e.g., Donnarumma et al. 2011, Umetsu et al. 2012). Project like

CLASH (Postman et al. 2012) will provide a much clear view on any mismatch in the

cluster mass distribution as mapped with different probes.

2.2 Comparison with methods based on the velocity distribution of the galaxies

Zwicky (1933, 1937) first used the virial theorem applied to the observed distribution of

galaxies to estimate the mass of the Coma cluster. With some modifications, notably a

correction term for the surface pressure (The & White 1986), the virial theorem remains

in wide use (e.g., Girardi et al. 1998 and references therein). Jeans analysis incorporates

the radial dependence of the projected galaxy velocity dispersion (e.g., Carlberg et al.

1997; van der Marel et al. 2000; Biviano & Girardi 2003 and references therein) and

obviates the need for a surface term. Jeans analysis and the caustic method are closely

related. Both use the phase-space distribution of galaxies to estimate the cluster mass

profile. The primary difference is that the Jeans method assumes that the cluster is in

dynamical equilibrium; the caustic method does not. The Jeans method depends on

the width of the velocity distribution of cluster members at a given radius, whereas

the caustic method calculates the edges of the velocity distribution at a given radius.

Katgert et al. (2004), for a combination of 59 nearby clusters from the ESO Nearby

Abell Cluster Survey, reported a best-fit with a NFW with concentration of 4 (+2.7
−1.5 at 1

σ level), permitting mass models with a core only if the core radius is sufficiently small

(rρ0/2 ≤ 0.13R200 at the 99% CL). Rines & Diaferio (2006) confirmed that cluster

infall regions are well fitted by NFW and Hernquist profiles and poorly fitted by sin-

gular isothermal spheres. This much larger sample enables new comparisons of cluster
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properties with those in simulations. The shapes (specifically NFW concentrations) of

the mass profiles agree well with the predictions of simulations. The mass in the infall

region is typically comparable to or larger than that in the virial region. Specifically,

the mass inside the turnaround radius is on average 2.19 ± 0.18 times that within the

virial radius. This ratio agrees well with recent predictions from simulations of the final

masses of dark matter halos (see also Biviano & Salucci 2006). Wojtak & Lokas (2010)

analyzed the kinematic data of 41 nearby (z < 0.1) relaxed galaxy clusters and found

that, if the total mass distribution is approximated by a NFW profile, the concentra-

tion is 6.9+0.6
−0.7 at the virial mass of 5 × 1014M⊙. They demonstrated that less evolved

clusters have shallower mass profiles and their galaxy orbits are more radially biased at

the virial sphere. Ettori et al. (2002), using X-ray based mass profiles from BeppoSAX

data and optical determinations from Girardi et al. (1998), measured a median devi-

ation of about 1.2 and 0.8 σ in mass and velocity dispersion estimates, respectively,

in a sample of 16 objects. Moreover, they obtained evidence that larger deviations are

present in the subsample of no-cool-core, not-relaxed systems (2.7 and 2.0 σ deviation

in mass and velocity dispersion, respectively, for NCC objects; 1.0 and 0.7 σ for CC

clusters), suggesting that mergers affecting them propagate to the optical determina-

tions of the velocity dispersion and to the validity of the hydrostatic assumption made

in the process of the estimation of the X-ray mass.

2.3 Systematic uncertainties on the mass measurements

All the X-ray mass measurements are affected from systematic uncertainties. For in-

stance, different X-ray detectors, even on board of the same satellite, provide different

estimate of the spectral temperature and flux of the same region of the ICM. This

is mainly due to the present limits in cross-calibrating the energy dependence and

normalization of the effective area of the X-ray instrument. Nevalainen et al. (2010)

provide the most recent effort to compare the spectral estimates with different instru-

ments like XMM-Newton EPIC-pn and EPIC-MOS, Chandra ACIS-S and ACIS-I, and

BeppoSAX MECS. Their figure 20 and table 11 summarize the state of the art as of

December 2009: with respect to EPIC-pn, the temperature estimates in the soft (0.5–2

keV), hard (2–7 keV) and wide (0.5–7 keV) band can be recovered, on average, with a

relative accuracy better than 5%, as for the fluxes in the soft and hard band; however, a

clear tension is shown between ACIS and EPIC-pn, with weighted mean of the relative

difference of 18 and 14 per cent in the measurements of the temperature in the soft and

wide band, and of 11 per cent in the measurement of the flux in the hard band. These

mismatches have to be considered when mass estimates for the same objects are ob-

tained from different detectors. Moreover, if corrections to the hydrostatic equilibrium

equation are required for bulk motions of the ICM or non-thermal pressure support,

the X-ray total mass would be underestimated, whereas if clumpiness is present in

the ICM that is assumed to be smoothly distributed (e.g. Mathiesen et al. 1999), the

gas mass would be overestimated and the total mass underestimated (because of the

smaller gradient entering the HE).

Galaxy clusters are dynamically young systems. They accrete cosmic materials

through mergers that can make inaccurate the assumption of the hydrostatic equilib-

rium between the X-ray emitting plasma and the underlying gravitational potential.

Recent cosmological simulations probed that the reconstructed total mass profiles can

be biased low by 10–20 % when the spherical symmetry and the hydrostatic equilib-
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rium are assumed. The assumption of spherical symmetric distribution of the ICM has

been shown to induce differences in the order of few per cent at large distance from the

cluster center for compressed/elongated shapes of the ICM (e.g. Piffaretti et al. 2003;

see more details in Limousin et al. in the present volume). Buote & Humphrey (2012a,

b) demonstrate that the mass enclosed within an ellipsoidal gravitational potential in

hydrostatic equilibrium is defined in the same way as in equation 7 once a corrective

factor η = qbqc
3

(

1 + 1/q2b + 1/q2c
)

≈ 1, where qb = b/a and qc = c/a are the axis ratios

satisfying the relation 0 < qb ≤ qc ≤ 1, is considered.

On the other hand, the assumption of the hydrostatic equilibrium itself can be

limited from the presence of residual bulk motions in the ICM due to major mergers

that can provide a non-thermal contribution to the dynamical stability of even relaxed

objects (see, e.g. Evrard, Metzler, Navarro 1996; Schindler 1996; Bartelmann & Stein-

metz 1996; Balland & Blanchard 1997; Kay et al. 2004; Rasia et al. 2006; Hallman et

al. 2006; Nagai, Vikhlinin, Kravtsov 2007; Fang et al. 2009; Lau et al. 2009; Meneghetti

et al. 2010; Nelson et al. 2012; Rasia et al. 2012). As illustrated in equation 5, if the

ICM bulk velocity is not null, some extra components, apart from the thermal gas, are

expected to support the total gravitational potential. Suto et al. (2013) identify three

other effective mass terms to be added to the thermal one if the gas motion is not

negligible: a rotational term produced from the centrifugal force, a term related to the

streaming speed, and an acceleration term that contributes with a positive/negative

addendum on the total mass when the bulk of the gas is decelerating/accelerating.

In recent years, the uncertainties affecting the reconstructed X-ray masses have

been addressed by applying the observational techniques to mock observations. In

one of the first attempts of this kind, Rasia et al. (2006), using some mock Chandra

observations of hydrodynamical simulations of massive galaxy clusters, have found that

the mass profile obtained via a direct application of the HEE is strongly dependent upon

the measured temperature profile, with irregular radial distributions and associated

large errors inducing a significant scatter on the reconstructed mass measurements.

The poorness of the β−model in describing the gas density profile makes the evaluated

masses to be underestimated by ∼40 per cent with respect to the true mass, both

with an isothermal and a polytropic temperature profile, in particular when some

extrapolation is required from the narrow field-of-view with respect to the total cluster

X-ray emission. In comparison with it, a mass-modelling (backward process; see sect. 2)

method has been shown to be more robust in reconstructing the total mass.

From mock Chandra exposures of high-resolution Eulerian simulations of 16 galaxy

clusters, Nagai et al. (2007) concluded that the X-ray hydrostatic estimate of the total

mass is biased low by ∼ 5%–20% within the virial region, mainly for the additional

non-thermal pressure support provided by subsonic bulk motions in the ICM. They ob-

served that this bias increases toward cluster outskirts and is dependent on the cluster

dynamical state, affecting however also relaxed clusters. The effect of residual subsonic

bulk and random gas motions on the X-ray mass and concentration estimates was also

evaluated by Lau et al. (2009), using the same set of simulated clusters presented in

Nagai et al. (2007). They estimated that the gas motions can provide up to 5%-15% of

the total pressure support in relaxed clusters, while this relative contribution increases

for unrelaxed systems. They concluded that this effect can lead to underestimate the

cluster total mass, and it is more significant at larger radii where the ICM is less relaxed

(and thus the contribution of gas motions to the pressure is larger). In a following work,

Nelson et al. (2012) examined specifically the effect of mergers on the hydrostatic mass

estimate and claimed it becomes negligible 4 Gyrs after the major event, finding that,
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Fig. 8 Observational limits on the ICM turbulence. (Left; from Fang et al. 2009) Average
X-ray ellipticity profiles measured in relaxed simulated CDM clusters (solid black; dashed line:
from an object simulated without radiative cooling or star formation) and in the observed
clusters (dashed red; from Chandra and ROSAT PSPC data for the inner and outer parts,
respectively). (Right; from Sanders & Fabian 2013) Upper limits on velocity broadening
as a function of the ICM temperature measured with XMM-Newton RGS. The sound speed
as a function of temperature and the energy density in random motions corresponding to 20
per cent of the thermal energy density are also plotted.

at R500, the contribution from non-thermal pressure support peaks at about 30% of

the total pressure during the merger and quickly decays to 10–15% as a cluster relaxes.

Overall, simulators emphasized the role played from random turbulent gas motion to

the additional pressure support required in their simulated galaxy clusters, presenting

it as the main contributor to the systematic errors budget in X-ray mass estimates.

Fang et al. (2009), instead, have presented convincing evidence that the support of the

ICM in relaxed simulated objects from rotational and streaming motions is compara-

ble to the support from the random turbulent pressure out to ∼ 0.8R500. This should

translate in large ellipticities of the X-ray isophotes, that are not observed in a sample

of 9 clusters observed with ROSAT PSPC and Chandra (see Fig. 8). They conclude,

thus, that observed clusters are, on average, much rounder and have a distinctly differ-

ent radial variation in ellipticity than the simulated objects from which a systematic

bias in the hydrostatic mass has been estimated.

Another way to detect and measure the ICM rotational motion is through the

Doppler shifts and broadening of the emission lines present in X-ray spectra (e.g.

Inogamov & Sunyaev 2003). While the low resolution spectra from CCD on board

of ASCA Chandra and Suzaku have been used to look for changes in the ICM bulk

velocity as a function of position on, e.g., Centaurus cluster (e.g. Dupke & Bregman

2006, Ota et al. 2007), the only direct limit on the ICM turbulence has been obtained

from Sanders & Fabian (2013) with the XMM-Newton Reflection Grating Spectrometer

(RGS) spectra of the the X-ray emitting gas from the central regions of about 60 galaxy

systems. The authors find an upper limit of 500 km s−1 for more than a third of these

objects. Massive galaxy clusters like A1835 and MACSJ2229.7–2755 have limits on the

velocity width close to 300 km s−1. Overall, about half of the elliptical galaxies, galaxy

groups and clusters studied show limits that are consistent with hosting less than 20

per cent of the thermal energy density in the form of random motions in the central

regions mapped through this analysis (see Fig. 8).



21

Fig. 9 Reconstructed mass profiles from hydrodynamical simulations (from Meneghetti et
al. 2010). (Top panels) Ratios between Mtot as obtained from the backward method (see
Sect. 2) in the X-ray analysis and the true masses of the 3 simulated objects seen along 3
different line-of-sight. On the right, the comparison with masses estimated by applying the
HEE is shown. (Bottom panel, left) Ratio between X-ray and lensing masses as a function
of the overdensity ∆ (squares). The results are shown for the X-ray masses obtained with
the forward (red) and backward (blue) methods and for the lensing masses obtained with the
SL+WL method. For comparison, they also show the ratios between the X-ray masses and
the true masses of the clusters (asterisks) and the ratios between the masses determined via
the hydrostatic equilibrium equation using the true gas density and temperature profiles and
the true masses (dashed line). The diamonds and the triangles show the results published by
Mahdavi et al. (2008, M08) and Zhang et al. (2010, Z09). (Bottom panel, right) Comparison
between estimated and true gas mass.

The work on simulations has been extended recently from X-ray to the strong

and weak lensing mass reconstruction in Meneghetti et al. (2010), where the mass

distribution in 3 massive (M200 ∼ 6.8−11.4×1014M⊙) objects obtained from N-body /

hydrodynamical simulations has been studied through observational techniques applied

to the realistic mock observations along three different line-of-sight. They concluded

that strong lensing models can be trusted over a limited region around the cluster

core. Extrapolating the strong lensing mass models to outside the Einstein ring can

lead to significant biases in the mass estimates. Weak lensing mass measurements can

be largely acted by substructures, depending on the method implemented to convert

the shear into a mass estimate. Using non-parametric methods which combine weak

and strong lensing data, the projected masses within R200 can be constrained with a

precision of about 10%. Deprojection of lensing masses increases the scatter around
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the true masses by more than a factor of two due to cluster triaxiality. X-ray mass

measurements present a bias that is radial dependent and is entirely ascribable to bulk

motions of the simulated gas. Using the lensing and the X-ray masses as proxies for

the true and the hydrostatic equilibrium masses of the simulated clusters, by averaging

over the cluster sample Meneghetti et al. (2010) were able to measure the lack of

hydrostatic equilibrium in the systems investigated (see Fig. 9), similarly to what has

been obtained by comparing observational constraints on the weak-lensing and X-ray

masses (M500,X/M500,WL ≈ 0.9 ± 0.1 in a sample of 19 clusters observed with Subaru

and XMM-Newton and studied in Zhang et al. 2008; MX/MWL = 1.03 ± 0.07 and

0.78 ± 0.09 at R2500 and R500, respectively, for the 18 objects analyzed in Mahdavi

et al. 2008). An extension of this work to 20 simulated objects with an extensive

analysis of the dependence of the hydrostatic bias on cluster morphology, environment,

temperature inhomogeneity and mass is presented in Rasia et al. (2012). They conclude

that the X-ray mass bias grows from the inner to the outer regions of the clusters

and is strongly correlated with temperature inhomogeneities and, more weakly, with

some morphological parameters like the the centroid shift and third-order power ratio.

The increase of the bias in the cluster outskirts is due to a more dramatic lack of

hydrostatic equilibrium and to a flattening of the gas density profile due to gas clumping

(e.g. Nagai & Lau 2011). The amount of the bias estimated by the evaluation of the

hydrostatic mass using the mass-weighted temperature and the intrinsic gas density of

the simulated objects is of about 15% and is consistent with the estimates from previous

works (e.g. Jeltema et al. 2008, Piffaretti & Valdarnini 2008, Ameglio et al. 2009, Lau

et al. 2009; see Fig. 7). A further 10-15% is induced from temperature inhomogeneities

particularly high in this set of simulations where the thermal conduction is set to zero,

not allowing to this process, which is very effective in hot systems, to make more

homogeneous the ICM thermal structure.

We can parametrize the uncertainties on the measurements of the total gravitating

mass and gas mass through the factors B and C, respectively: Mtot,obs = Mtot,true×B;

Mgas,obs = Mgas,true × C. These factors go in the direction to rise the total mass

estimates (i.e. B < 1) if corrections to the hydrostatic equilibrium equation are required

for bulk motions of the ICM or non-thermal pressure support, and to lower the true gas

mass (i.e. C > 1) if clumpiness is present in the ICM that is assumed to be smoothly

distributed.

The factor B, which parametrizes the uncertainties on Mtot is expected to be

between 0.8 and 1 from the cluster mass profiles recovered from both X-ray and lensing

data, and it seems to depend on the overdensity at which it is measured, decreasing

at lower ∆, where the assumption of the hydrostatic equilibrium is less tenable (e.g.

Mahdavi et al. 2008 and 2013, Zhang et al. 2010; see Fig. 7 and 9).

The factor C represents the level of clumpiness that affects the estimate of Mgas

in X-ray analysis and that simulations show to be lower than 1.2 (Mathiesen et al.

1999; see also recent observational constraints in Simionescu et al. 2011, Eckert et al.

2013a, 2013b). Meneghetti et al. (2010; see also Nagai et al. 2007 and panel at the

bottom of Fig. 9) compare the gas mass derived from an X-ray analysis and its true

value in numerical simulations. They conclude that different X-ray methods provide

results consistent within 2σ. Moreover, the gas mass is recovered, on average, to better

than 1 per cent at R2500 and at 7 per cent (with a 3 per cent scatter) at R500. At

larger radii, a trend to slightly overestimate Mgas is detected as consequence of the

inhomogeneities (i.e. clumpiness, but also asymmetry –Vazza et al. 2011, Eckert et al.

2012) present in the gas distribution.
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3 Mass profiles as cosmological proxies

Galaxy clusters are really powerful cosmological probes in constraining the geometry

and the relative amounts of the matter and energy constituents of the Universe, in

particular through the normalization, slope and evolution of the mass function (see,

e.g., review in Allen, Evrard & Mantz 2011). We refer to the review by Giodini et al.

in the present volume to appreciate which X-ray observables, and at which level of

accuracy, can be associated to the integrated values of total and gas mass.

In this section, we present how the distribution of the total and baryonic mass

in galaxy clusters can be used to validate the scenario of structure formation in a

CDM Universe. We discuss here the two cases that provide the most stringent limits

nowadays (along with the cluster mass function discussed in e.g. Allen , Evrard &

Mantz 2011) (i) the gas mass fraction, and (ii) the concentration-mass relation. Before

that, we describe the cosmological framework in which we operate.

3.1 The cosmological model

The Friedmann model is the simplest model of the Universe based on the cosmological

principle that the matter distribution is isotropic (i.e. the same in all directions) and

homogeneous (i.e. independent of location). From these assumptions, the equations of

Einstein can be solved introducing the time derivatives of the scale factor a, the energy

density (ρc2) and pressure (P ) of the perfect fluid of which the energy-momentum

tensor is adopted, the curvature parameter k and the cosmological constant Λ:

H2 =
(

ȧ

a

)2

=
8πGρ

3
− kc2

a2
+

Λc2

3
,

Ḣ + H2 =
(

ä

a

)

= −4πG

3

(

ρ +
3P

c2

)

+
Λc2

3
. (12)

These relations are known as Friedmann equations and are related one to each other

once the adiabatic expansion of the Universe is taken into account, i.e. d(ρc2a3) =

−3Pa2da. To solve this system of equations and determine the time evolution of the

cosmic scale factor a(t)/a(0) = (1 + z)−1, we need to specify the equation of state

w = P/(ρc2). In the present Cold Dark Matter (CDM) model, the universe starts as

dominated from relativistic particles (w = 1/3) and is presently filled with cold matter

(w = 0).

Introducing the density parameter Ω = ρ/ρc, where ρc = 3H2
0/(8πG) is the crit-

ical density at z = 0, H0 is Hubble’s constant and G is the gravitational constant,

equation 12 can be rewritten in a more convenient form as

H2
z

H2
0

= E(z)2 = Ωm(1 + z)3 + Ωk(1 + z)2 + ΩDEλ(z)

λ(z) = exp

(

3

∫ z

0

1 + w(z)

1 + z
dz

)

. (13)

Note that the above equations consider the dependence upon the ratio w between the

pressure and the energy density in the equation of state of the dark energy compo-

nent (see a review in Peebles & Ratra 2003). In particular, the case of a cosmological
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constant, ΩDE = ΩΛ, requires w = −1. When a flat (k = 0) cosmology with mat-

ter density Ωm is considered (which is the cosmological model usually adopted for

reference), E(z) =
[

Ωm(1 + z)3 + 1 −Ωm

]1/2
.

Hereafter, we refer to Ωb as the baryon matter density parameter, to Ωm as the total

matter density parameter (i.e. Ωm = Ωb+Ωc, where Ωc is the cold dark matter compo-

nent), to ΩDE (or ΩΛ when w = −1) as the dark energy density parameter. We neglect

(i) the energy associated with the cosmic radiation, Ωr ≈ 4.16×10−5(TCMB/2.726K)4 ,

and (ii) any possible contributions from light neutrinos, Ωνh
2
70 =

∑

mν/45.5eV, that

is expected to be non-zero, but less than 0.01 for a total mass in neutrinos,
∑

mν ,

lower than ∼ 1 eV (note that the neutrino thermal history is very different from that

of the CDM with very distinct signature on cosmic structure; in particular, cosmology

is sensitive to the total energy density in neutrinos, which for non-relativistic neutrinos

is simply proportional to
∑

mν ; see review on Hannestad 2010). The Einstein equa-

tion can be written then in the form Ωm + ΩDE + Ωk = 1, where Ωk accounts for the

curvature of space. From, e.g., Carroll, Press & Turner (1992, cf. eq. 25), we can then

write the angular diameter distance as

dang = dlum

(1+z)2 = c
H0(1+z)

S(ω)

|Ωk|1/2
,

ω = |Ωk|1/2
∫ z

0
dζ

E(ζ)
, (14)

where dlum is the luminosity distance, S(ω) is sinh(ω), ω, sin(ω) for Ωk greater than,

equal to and less than 0, respectively.

3.2 The gas mass fraction as a cosmological probe

The gas mass fraction, fgas = Mgas/Mtot, as inferred from X-ray observations of

clusters of galaxies uses and combines two independent methods to constrain the cos-

mological parameters: (i) the relative amount of baryons with respect to the total mass

observed in galaxy clusters is compared to the cosmic baryon fraction to provide a

direct constraint on Ωm (this method was originally adopted by White et al. 1993 to

show the limitation of the standard cold dark matter scenario in an Einstein-de Sitter

Universe), (ii) the parameters that describe the geometry of the Universe (specifically

ΩΛ or w) are limited by assuming that the gas fraction is constant in time, as first

suggested by Sasaki (1996) and Pen (1997).

Starting from these pioneering works, many studies have followed this approach to

constrain the cosmological parameters (see, e.g., Allen et al. 2008, Ettori et al. 2009

and references therin).

No selection effect is expected to occur in the application of the gas mass frac-

tion method once the clusters are selected to ensure (i) the use of the hydrostatic

equilibrium equation to recover the total mass, and (ii) a negligible contribution from

non-gravitational energy in the region of interest to allow the use of cross–calibration

with numerical simulations, such as the estimate of the depletion parameter (see below).

The selection of X-ray morphologically round, relaxed, hot, massive systems dominated

energetically by gravitational collapse satisfies both these conditions.

To run this cosmological analysis, one needs the estimates of the gas mass fraction,

fgas = Mgas/Mtot, provided from equations 7 and 9, and few more ingredients. In

detail, they are the following:
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Fig. 10 (Top, left) Sensitivity of the cluster baryon fraction method to the variation of
the cosmological parameters. The shaded region indicates the redshift range considered in the
present studies. (Top, right) Distribution of the X-ray gas mass fraction measured within
R2500 as a function of redshift in a ΛCDM model (from Allen et al. 2008). (Bottom, left)
Stellar mass fractions and ratios between their values and the estimated gas mass fraction
at R500 as a function of redshift. Dashed lines indicate the median value: fcold = 0.009 and
fcold/fgas = 0.091. The two diamonds indicate the values for RDCS-J0910 and RDCS-J1252
with the stellar masses estimated from the near-infrared luminosity function in Strazzullo et
al. (2006). A cosmology of (H0, Ωm, ΩΛ) = (70 km s−1 Mpc−1, 0.3, 0.7) is adopted here. (Bot-
tom, right) Baryon fraction measured in SPH hydrodynamical simulations (from Planelles
et al. 2013) compared with some observational constraints (Laganá et al. 2011, Giodini et al.
2009, Lin et al. 2003). The solid line represents the cosmic baryon fraction assumed in the
simulations.

– fbar = fgas + fcold, where the gas mass fraction fgas is directly measured from

X-ray observations and depends upon the cosmological parameters through the an-

gular diameter distance, dang, defined in equation 14, being fgas = Mgas/Mtot ∝
ngasR

3/R ∝ d
5/2
ang/dang ∝ dang(Ωm, ΩΛ, w)3/2 (see Fig. 10 for the relative de-

pendence upon different cosmologies), while the mass fraction of cold baryons,

fcold = Mcold/Mtot, is defined as the sum of the stellar component and the intr-
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acluster light (see, e.g. Gonzalez et al. 2007, Laganá et al. 2008) divided by the

total mass, and is generally estimated through a statistical approach lacking often

specific information on the single cluster analyzed (Fig. 10). The error on fbar,

ǫbar, is the sum in quadrature of the uncertainties on fgas, on fstar and on the as-

sumed value of Hubble’s constant H0 (see below) propagated through the following

dependence: fgas ∝ H−1.5
0 and fcold ∝ H−1

0 .

– The depletion parameter b = fbar/(Ωb/Ωm) (with error ǫb) represents the fraction

of cosmic baryons that fall in the cluster dark matter halo and is estimated from

hydrodynamical simulations (e.g. Kravtsov et al. 2005, Ettori et al. 2006, Planelles

et al. 2013; see Fig. 10). In massive galaxy clusters at z = 0, b(< R2500) is estimated

in the range 0.77–0.85 and b(< R500) is equal to 0.85 ± 0.05. The latter value (as

estimated from Planelles et al.) is confirmed to be nearly independent of the physical

processes considered in recent SPH hydrodynamical simulations and characterized

by a negligible redshift evolution. It is worth mentioning that, recently, Eckert et

al. (2013b), by combining ROSAT PSPC gas density profiles and Planck pressure

profiles for a sample of nearby X-ray luminous galaxy clusters, have reconstructed

the gas mass fraction distribution out to R200, making a direct measure, for the

first time, of the depletion parameter associated to the gas only. Using as reference

for the cosmic baryon budget the constraints from WMAP7 (Komatsu et al. 2011),

they measure bgas(< R500) = 0.76 ± 0.02 × (∆/500)−0.2 × (Tgas/7 keV)0.5, which

is marginally consistent with the present limits from hydrodynamical simulations

(see e.g. Planelles et al. 2013).

– The cosmic baryon density Ωb and the Hubble constant H0 have to be assumed

from independent probes, like e.g. Primordial Nucleosythesis calculations (see, e.g.,

Steigman 2006) or analysis of the power spectrum of the temperature anisotropy

measured in the Comic Microwave Background (e.g. Hinshaw et al. 2013) and

calibrations of Cepheid distance scale (Riess et al. 2011, Freedman et al. 2012),

respectively.

These quantities are then combined to evaluate which is the best cosmological set

of parameters that reproduces the observed baryonic mass fraction in galaxy clusters.

Starting from some reference values of fgas estimated for an assumed cosmological

model (e.g. a ΛCDM) and at given overdensity (e.g. ∆ = 2500 or 500), their values

fcorgas for the “correct” cosmology will be the ones that satisfy at the same time the

following equations (e.g. Allen et al. 2008)

fcorgas(z) = fΛCDM
gas (z)

( dcorang

dΛCDM
ang

)3/2

= k
b(z)

1 + s(z)

Ωb

Ωm
, (15)

where k is a factor that includes a bias from any non-thermal pressure support and any

residual uncertainty in the accuracy of the instrument calibration and X-ray modeling

and s(z) is the observed ratio of the mass in stars (both in galaxies and intracluster

light) to the X-ray emitting gas mass. Similarly, we can write these conditions in a

single merit function that has to be minimized (e.g. Ettori et al. 2009)

χ2
f =

Ndat
∑

i=1

(fbar,i/bi −Ωb/Ωm)2

ǫ2bar,i/b
2
i + (fbar,iǫbi/b

2
i )2 + ǫ2Ωb

/Ω2
m
. (16)
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The distribution of the values of this χ2 provides the constraints on the set of cosmo-

logical parameters more sensitive to the gas fraction distribution, namely Ωm and ΩΛ

(or w).

3.3 The concentration-mass relation

Within a CDM model of the Universe, the N−body simulations of structure forma-

tion indicate that dark matter halos aggregate with a typical mass density profile

characterized by only 2 parameters, the concentration c and the scale radius rs (e.g.

Navarro, Frenk & White 1997). The product of these two quantities fixes the radius

within which the mean cluster density is 200 times the critical value at the cluster’s

redshift [i.e. R200 = c200 × rs and the cluster’s volume V = 4/3πR3
200 is equal to

M200/(200ρc,z), where M200 is the cluster gravitating mass within R200]. With this

prescription, the structural properties of DM halos from galaxies to galaxy clusters are

dependent on the halo mass, with systems at higher masses less concentrated. More-

over, the concentration depends upon the properties of the cosmological background at

the assembly redshift (e.g. Bullock et al. 2001, Neto et al. 2007 and reference therein),

which happens to be later in cosmologies with lower matter density, Ωm, and lower

normalization of the linear power spectrum on scale of 8h−1 Mpc, σ8. Under these

conditions of formation, less concentrated DM halos at given mass are expected. The

concentration – mass relation, and its evolution in redshift, is therefore a strong pre-

diction obtained from CDM simulations of structure formation and is quite sensitive

to the assumed cosmological parameters (NFW; Bullock et al. 2001; Eke, Navarro &

Steinmetz 2001; Dolag et al. 2004; Neto et al. 2007; Macciò et al. 2008). In this context,

NFW, Bullock et al. 2001 (with revision after Macciò et al. 2008) and Eke et al. 2001

have provided simple and powerful models that match the predictions from numerical

simulations and allow comparison with the observational measurements.

Recent X-ray studies (Pointecouteau et al. 2005; Vikhlinin et al. 2006; Voigt &

Fabian 2006; Zhang et al. 2006) have shown good agreement between observational

constraints at low redshift and theoretical expectations. By fitting 39 systems in the

mass range between early-type galaxies up to massive galaxy clusters, Buote et al.

(2007; see fig. 11) confirm with high significance that the concentration decreases with

increasing mass, as predicted from CDM models, and require a σ8, the dispersion of

the mass fluctuation within spheres of comoving radius of 8 h−1 Mpc, in the range

0.76− 1.07 (99% confidence), definitely in tension with the lower constraints obtained,

for instance, at that time from the analysis of the WMAP data (3-year results in Spergel

et al. 2007; as a further example of the complementarity of the cosmological constraints

via independent methods see also the effect of the WMAP 3-year results on the galaxy

cluster X-ray luminosity-gravitational mass relation in Reiprich 2006)4. Since they

are based upon a selection of the most relaxed systems, these results assumed a 10%

upward early formation bias in the concentration parameter for relaxed halos. Using a

sample of 34 massive, dynamically relaxed galaxy clusters resolved with Chandra in the

4 We quote here the best-fit values for (Ωmh2, σ8), with relative uncertainty at 68% con-
fidence levels, for the power-law flat ΛCDM model using the different releases of WMAP
data only: 1-year (Spergel et al. 2003): (0.14 ± 0.02, 0.9 ± 0.1); 3-year (Spergel et al. 2007):
(0.128 ± 0.008, 0.76 ± 0.05); 5-year (Komatsu et al. 2009): (0.1326 ± 0.0063, 0.796 ± 0.036);
7-year (Komatsu et al. 2011): (0.1345 ± 0.0056, 0.811 ± 0.030); 9-year (Hinshaw et al. 2013):
(0.1364 ± 0.0045, 0.821 ± 0.023).
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Fig. 11 (Top; from Buote et al. 2007) (Left) c − M relation for the sample of 39 galaxy
systems analyzed in Buote et al. (2007). The lines indicate the best-fit result (solid), the
intrinsic scatter (dotted) and the predictions from different ΛCDM models. (Right) Best-
fitting estimates (black X) and confidence contours (68%, 95%, 99%, 99.9%, and 99.99%) for
the best-fit parameters of the relation c = c14/(1 + z) × (M/M14)α with, overplotted, the
expected values from different cosmological models. (Bottom; from Ettori et al. 2010) (Left)
Data in the plane (c200,M200) used to constrain the cosmological parameters (Ωm, σ8). The
colour-code refers to the dynamical state of the clusters accordingly to the level of entropy
measured in their cores (from LEC = low entropy core, more relaxed systems to HEC =
high entropy core, more disturbed, objects, with MEC = medium entropy core clusters lying
between the two). The dotted lines show the predicted relations from Eke et al. (2001) for a
given ΛCDM cosmological model at z = 0 (from top to bottom: σ8 = 0.9 and σ8 = 0.7). The
shaded regions show the predictions in the redshift range 0.1−0.3 for an assumed cosmological
model in agreement with WMAP 1, 5 and 3 year (from the top to the bottom, respectively;
see footnote 4 for the cosmological values associated to these datasets) from Bullock et al.
(2001; after Macciò et al. 2008). The dashed lines indicate the best-fit range at 1σ obtained
for relaxed halos in a WMAP 5-year cosmology from Duffy et al. (2008; thin lines: z = 0.1,
thick lines: z = 0.3). (Right) Cosmological constraints in the (Ωm, σ8) plane obtained from
equations 17 and 16 by using predictions from the model by Eke et al. (2001). The confidence
contours at 1, 2, 3σ on 2 parameters (solid contours) are displayed. The combined likelihood
with the probability distribution provided from the cluster gas mass fraction method is shown
in red. The dashed green line indicates the power-law fit σ8 Ω0.6

m = 0.45.
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redshift range 0.06 − 0.7, Schmidt & Allen (2007) highlight a possible tension between

the observational constraints and the numerical predictions, in the sense that either

the relation is steeper than previously expected or some redshift evolution has to be

considered. Comerford & Natarajan (2007) compiled a large dataset of observed cluster

concentration and masses, finding a normalization higher by at least 20 per cent than

the results from simulations. In the sample, they use also strong lensing measurements

of the concentration concluding that these are systematically larger than the ones

estimated in the X-ray band, and 55 per cent higher, on average, than the rest of

the cluster population. Recently, Wojtak &  Lokas (2010) analyze kinematic data of

41 nearby (z < 0.1) relaxed objects and find a normalization of the concentration –

mass relation fully consistent with the amplitude of the power spectrum σ8 estimated

from WMAP 1-year data and within 1σ from the constraint obtained from WMAP

5-year. Ettori et al. (2010) recover the total and gas mass profiles for a sample of 44

X-ray luminous galaxy clusters located in the redshift range 0.1− 0.3, to constrain the

cosmological parameters σ8 and Ωm through the analysis of the measured distribution

of c200, M200 and baryonic mass fraction in the mass range above 1014M⊙. This dataset

allows to resolve the temperature profiles up to about 0.6−0.8R500 and the gas density

profile, obtained from the geometrical deprojection of the PSF–deconvolved surface

brightness, up to a median radius of 0.9R500. Beyond this radial end, the estimates are

the results of an extrapolation obtained by imposing a NFW profile for the total mass

and different functional forms for Mgas. They estimate a dark (Mtot − Mgas) mass

within R200 in the range (1st and 3rd quartile) 4− 10× 1014M⊙, with a concentration

c200 between 2.7 and 5.3, and a gas mass fraction within R500 between 0.11 and 0.16.

The c200−M200 relation is constrained to have a normalization c15 = c200×(1+z)×
(

M200/1015M⊙

)−B
of about 2.9−4.2 and a slope B between −0.3 and −0.7 (depending

on the methods used to recover the cluster parameters and to fit the linear correlation

in the logarithmic space), with a relative error of about 5% and 15%, respectively.

Once the slope is fixed to the expected value of B = −0.1, the normalization, with

estimates of c15 in the range 3.8−4.6, agrees with results of previous observations and

simulations for calculations done assuming a low density Universe. A total scatter in the

logarithmic space of about 0.15 is measured at fixed mass. This value decreases to 0.08

when the subsample of clusters more dynamically relaxed and hosting a cooling core is

considered. For this sample, a slightly lower normalization and flatter distribution are

measured. This is consistent in a scenario where disturbed systems have an estimated

concentration through the hydrostatic equilibrium equation that is biased higher (and

with larger scatter) than in relaxed objects up to a factor of 2 due to the action of the

ICM motions (see e.g. Lau et al. 2009).

To constrain the cosmological parameters of interest, σ8 and Ωm, Ettori et al.

(2010) calculate first the concentration c200,ijk = c200(Mi, Ωm,j, σ8,k) predicted from

the model investigated at each cluster redshift for a given grid of values in mass, Mi,

cosmic density parameter, Ωm,j, and power spectrum normalization, σ8,k. Then, (i)

a new mass M200,j and concentration c200,j are estimated for a given Ωm,j; (ii) a

linear interpolation on the theoretical prediction of c200,ijk is performed to associate

a concentration ĉ200,jk to the new mass M200,j for given Ωm,j and σ8,k; (iii) the merit

function χ2
c is evaluated

χ2
c = χ2

c(Ωm,j, σ8,k) =
∑

data,i

(

c200,i − ĉ200,jk
)2

ǫ2200,i + σ2
c

, (17)
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where ǫ200,i is the 1σ uncertainty related to the measured c200,i and σc is the scatter

intrinsic to the mean predicted value ĉ200,jk as evaluated in Neto et al. (2007).

To represent the observed degeneracy in the (σ8, Ωm) plane, a power-law fit σ8 Ω
γ
m =

Γ can be adopted to obtain γ = 0.60 ± 0.03 and Γ = 0.45 ± 0.02 (at 2σ level). By

using the gas mass fraction method described in the previous section, this degeneracy

can be further broken to measure σ8 = 1.0 ± 0.2 and Ωm = 0.26 ± 0.01 (at 2σ level;

statistical only and for relaxed objects; see Fig. 11).

However, because a calibration is needed in mapping the observed distribution of

the concentrations with the expected one, for a given mass, as a function of σ8, Ωm

and redshift, they have also noted how the cosmological constraints depend upon the

models adopted to relate the properties of a DM halo to the background cosmology.

In particular, to make this technique more reliable and robust, N−body simulations

produced with different input cosmological parameters over cosmological volumes large

enough to sample massive (> 1014M⊙) DM halos are required.

3.3.1 A collection of estimates of concentration and mass through X-ray and lensing

techniques

We present in figure 12 a collection of measurements of the values of concentration

and mass as estimated through X-ray and lensing techniques since the year 2005. De-

scriptions of the mass reconstruction methods through gravitational lensing distortion

of the optical light from background galaxies around a galaxy cluster are presented in

Hoekstra et al., Meneghetti et al., Bartelmann et al. in the present volume.

To convert these estimates to a common value of the overdensity, we proceed in the

following way. The total mass within a given overdensity ∆ with respect to the critical

density of the Universe is described by eq. 8 and implies that M∆/(R3
∆∆) is constant.

By definition of the NFW mass profile, the radius R∆ of the spherical region that

encloses M∆, the concentration c∆ and the scale radius rs of the mass distribution are

related by the equation R∆ = c∆rs. Hereafter, we assume as overdensity of reference

the value ∆ = 200. Then, we can write

M∆

M200
=

c3∆
c3200

∆

200
= C3 ∆

200
, (18)

where C = c∆/c200 and the values of concentrations are related through the NFW

mass density profile

C3 ∆

200
=

ln(1 + c200C) − c200C/(1 + c200C)

ln(1 + c200) − c200/(1 + c200)
. (19)

This function is monotonic and can be easily solved numerically to estimate C, that

is a quantity that depends mostly on ∆ and only marginally on the guessed c200
(see fig. 13). For instance, for ∆ = 178Ω0.45

m,z , which indicates the virial overdensity

predicted from the spherical collapse model in a flat Universe with a contribution from

dark energy (Eke et al. 2001), C = 1.34 and 1.11 at z = 0 and z = 1, respectively, for

Ωm = 0.3 and c200 = 4, with deviations within 2% in the range of c200 = 3−8. In case

the overdensity is referred to the background density of the Universe, ρb = Ωm,z ρc,z,

it is straightforward to correct ∆ by Ωm,z = Ωm(1 + z)3/H2
z to recover the definition

in equation 8.
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Fig. 12 Estimates of concentration and mass obtained through X-ray, strong and weak lensing
analysis and available in literature since 2005. The top 4 panels collect the measurements in 4
redshift bins (z < 0.15, 0.15 < z < 0.25, 0.25 < z < 0.4, z > 0.4) and contain 35, 40, 44 and 26
clusters, respectively. The panel at the bottom shows the distribution of the published values of
c200 and M200 as a function of the clusters’ redshift. These observed values are compared with
the expected distribution from numerical simulations in Duffy et al. (2008) and relative scatter
(dashed and dotted lines). The shaded region indicates the lower/upper quartiles computed in
redshift’s bins with 24 measurements and after excluding recursively the 8 at at the lowest
redshifts.
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Fig. 13 Fraction of R200 mapped within a given overdensity ∆ for an assumed NFW profile
with c200 in the range 3–8 (from the thinnest to the thickest line)

Thus, equation 8 and the value of C as obtained from equation 19 are used to

convert from {c∆,M∆} to {c200,M200}.

In Fig. 12, we present the collection of about 400 measurements obtained for

145 single objects in the redshift range 0.04–0.89. Eighty per cent of these values

lie at intermediate redshift (0.1–0.5). About 47 per cent originates from X-ray anal-

ysis, 21 and 32 per cent from strong and weak lensing technique, respectively. By

using a Bayesian linear regression method (coded in the LINMIX ERR IDL routine;

Kelly 2007) to fit the distribution plotted in Fig. 12, in which the predicted mass

dependence of the c − M relation from N-body simulations is assumed, we measure

c200×M0.084
200 = 4.58(±0.44)×(1+z)0.78±0.44 . However, given the heterogeneous origin

of these quantities, we do not speculate further on, e.g., some tension between their

distribution in the concentration-mass-redshift plane and the one predicted from nu-

merical simulations at z > 0.3 or on the comparison between mass and concentration

as estimated for the same object with different methods.

We postpone a more detailed analysis of the best constraints on the distribution of

the values in the concentration-mass-redshift plane in a dedicated forthcoming study.

4 Conclusions

Galaxy clusters form through the hierarchical accretion of cosmic matter. The end

products of this process are virialized structures that feature, in the X-ray band, similar

radial profiles of the surface brightness Sb (e.g. Croston et al. 2008, Eckert et al. 2012)

and of the plasma temperature Tgas (e.g. Allen et al. 2001, Vikhlinin et al. 2005,

Leccardi & Molendi 2008a).

In recent years, measurements of the spatially-resolved X-ray properties of galaxy

clusters have definitely improved thanks to the arcsec resolution and large collecting

area of the present X-ray satellites, like Chandra and XMM-Newton. For instance,

central luminous regions have shown fronts, i.e. sharp contact discontinuities between

regions of gas with different densities. The classic bow shocks are driven by infalling
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subclusters. The cold fronts are found in mergers as well as around the central density

peaks in relaxed clusters and are caused by motion of cool, dense gas clouds in the am-

bient higher-entropy gas. These clouds are either remnants of the infalling subclusters,

or the displaced gas from the cluster’s own cool cores (see, e.g., review in Markevitch

& Vikhlinin 2007). More difficult is to characterize properly the cluster outskirts where

the X-ray surface brightness is comparable to the level of the fore/background. Notice-

able progress has occurred recently thanks to Suzaku exposures, also in combination

with revised analyses of ROSAT PSPC observations and data of the Sunyaev-Zeldovich

signal provided from Planck (see Reiprich et al. in the present volume).

To facilitate comparisons on the properties of the mass determinations, we suggest

the adoption of a checklist to be followed during the analysis and production of new

estimates based on X-ray observations:

– quote the adopted background cosmology

– use the latest calibration files for the data reduction and specify them in the text

– mask point-sources in the soft X-ray image both for spectral and spatial analysis.

This is particularly relevant at high redshift, where the combined effects of the

dimming of the X-ray surface brightness and the observed increases in the pop-

ulation of X-ray bright AGNs in clusters’ regions (e.g. Martini et al. 2009) could

biases significantly the measured quantities. For example, Branchesi et al. (2007)

quantify the contamination on the gas temperature and luminosity estimates in an

increase by about 13 and 17 per cent, that becomes of 24-22 per cent respectively

at z > 0.7.

– mask clumps and mergers localized in the soft X-ray image both for spectral and

spatial analysis; remind that hydrostatic equilibrium holds locally, i.e. look for

relaxed regions also in merging systems

– define and quote the X-ray center (for instance, the peak or the centroid in the

X-ray image) used for both spatial and spectral analysis

– define the binning adopted to construct the spectra and the surface brightness

profiles

– describe in a reproducible way the strategy adopted for the background correc-

tion (e.g. subtraction of a background determined locally –i.e. in the same field of

the target–; subtraction of a background estimated from other deep blank fields;

modelling of the spectral emission of the background)

– prefer a C statistic in the spectral fit, in particular when the counts statistic is low,

and quote the goodness of the spectral and spatial fits

– apply both a PSF correction -if required- and a deprojection (or projection of your

model) of the temperature profile

– several methods are available to solve the HEE (see Section 2): they have differ-

ent pros and cons, but they do not appear affected from systematic differences

(see e.g. Meneghetti et al. 2010) and, more importantly, they are not missing any

contribution from the thermalized ICM

– quote the values of the measured mass with the relative statistical and systematic

errors and the physical radius at which these values are estimated

– try to avoid any strong extrapolation and, in any case, state clearly a measurement

done on actually measured profiles and, if the estimates are extrapolated, where is

the observational limit.
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