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Chapter 1

Beaming

1.1 Rulers and clocks

Special relativity taught us two basic notions: comparing dimensions and
flow of times in two different reference frame, we find out that they differ. If
we measure a ruler at rest, and then measure the same ruler when is moving,
we find that, when moving, the ruler is shorter. If we syncronize two clocks
at rest, and then let one move, we see that the moving clock is delaying.
Let us see how this can be derived by using the Lorentz transformations,
connecting the two reference frames K (that sees the ruler and the clock
moving) and K ′ (that sees the ruler and the clock at rest). For semplicity,
but without loss of generality, consider a a motion along the x axis, with
velocity v ≡ βc corresponding to the Lorentz factor Γ. Primed quantities
are measured in K ′. We have:

x′ = Γ(x− vt)

y′ = y

z′ = z

t′ = Γ
(

1 − β
x

c

)

(1.1)

with the inverse relations given by

x = Γ(x′ + vt′)

y = y′

z = z′

t = Γ

(

t′ + β
x′

c

)

. (1.2)

The length of a moving ruler has to be measured through the position of its
extremes at the same time t. Therefore, as ∆t = 0, we have

x′2 − x′1 = Γ(x2 − x1) − Γv∆t = Γ(x2 − x1) (1.3)

5



6 CHAPTER 1. BEAMING

i.e.

∆x =
∆x′

Γ
→ contraction (1.4)

Similarly, in order to determine a time interval a (lab) clock has to be
compared with one in the comoving frame, which has, in this frame, the

same position x′. Then

∆t = Γ∆t′ + Γβ∆
x′

c
= Γ∆t′ → dilation (1.5)

An easy way to remember the transformations is to think to mesons pro-
duced in collisions of cosmic rays in the high atmosphere, which can be
detected even is their lifetime (in the comoving frame) is much shorter than
the time needed to reach the earth’s surface. For us, on ground, relativistic
mesons live longer (for the meson’s point of view, instead, it is the length of
the travelled disctance which is shorter).

All this is correct if we measure lengths by comparing rulers (at the same
time in K) and by comparing clocks (at rest in K ′) – the meson lifetime is
a clock. In other words, if we do not use photons for the measurement
process.

1.2 Photographs and light curves

If we have an extended moving object and if the information (about position
and time) are carried by photons, we must take into account their (different)
travel paths. When we take a picture, we detect photons arriving at the same
time to our camera: if the moving body which emitted them is extended,
we must consider that these photons have been emitted at different times,
when the moving object occupied different locations in space. This may
seem quite obvious. And it is. Nevertheless these facts were pointed out in
1959 (Terrel 1959; Penrose 1959), more than 50 years after the publication
of the theory of special relativity.

1.2.1 The moving bar

Let us consider a moving bar, of proper dimension ℓ′, moving in the direction
of its length at velocity βc and at an angle θ with respect to the line of sight
(see Fig. 1.1). The length of the bar in the frame K (according to relativity
“without photons”) is ℓ = ℓ′/Γ. The photon emitted in A1 reaches the
point H in the time interval ∆te. After ∆te the extreme B1 has reached
the position B2, and by this time, photons emitted by the other extreme
of the bar can reach the observer simultaneously with the photons emitted
by A1, since the travel paths are equal. The length B1B2 = βc∆te, while
A1H = c∆te. Therefore

A1H = A1B2 cos θ → ∆te =
ℓ′ cos θ

Γ(1 − β cos θ)
. (1.6)
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Figure 1.1: A bar moving with velocity βc in the direction of its length. The
path of the photons emitted by the extreme A is longer than the path of
photons emitted by B. When we make a picture of the bar (or a map), we
collect photons reaching the detector simultaneously. Therefore the photons
from A have to be emitted before those from B, when the bar occupied
another position.

Note the appearance of the term δ = 1/[Γ(1−β cos θ)] in the transformation:
this accounts for both the relativistic length contraction (1/Γ), and the
Doppler effect [1/(1 − β cos θ)]. The length A1B2 is then given by

A1B2 =
A1H

cos θ
=

ℓ′

Γ(1 − β cos θ)
= δℓ′. (1.7)

In a real picture, we would see the projection of A1B2, i.e.:

HB2 = A1B2 sin θ = ℓ′
sin θ

Γ(1 − β cos θ)
= ℓ′δ sin θ, (1.8)

The observed length depends on the viewing angle, and reaches the maxi-
mum (equal to ℓ′) for cos θ = β.

1.2.2 The moving square

Now consider a square of size ℓ′ in the comoving frame, moving at 90◦ to the
line of sight (Fig. 1.2). Photons emitted in A, B, C and D have to arrive
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Figure 1.2: Left: A square moving with velocity βc seen at 90◦. The observer
can see the left side (segment CA). Light rays are assumed to be parallel,
i.e. the square is assumed to be at large distance from the observer. Right:

The moving square is seen as rotated by an angle α given by cosα = β.

to the film plate at the same time. But the paths of photons from C and
D are longer → they have to be emitted earlier than photons from A and
B: when photons from C and D were emitted, the square was in another
position.

The interval of time between emission from C and from A is ℓ′/c. During
this time the square moves by βℓ′, i.e. the length CA. Photons from A and
B are emitted and received at the same time and therefore AB = ℓ′/Γ. The
total observed length is given by

CB = CA+AB =
ℓ′

Γ
(1 + Γβ). (1.9)

As β increases, the observer sees the side AB increasingly shortened by
the Lorentz contraction, but at the same time the length of the side CA in-
creases. The maximum total length is observed for β = 1/

√
2, corresponding

to Γ =
√

2 and to CB = ℓ′
√

2, i.e. equal to the diagonal of the square. Note
that we have considered the square (and the bar in the previous section) to
be at large distances from the observer, so that the emitted light rays are
all parallel. If the object is near to the observer, we must take into account
that different points of one side of the square (e.g. the side AB in Fig.
1.2) have different travel paths to reach the observer, producing additional
distortions. See the book by Mook and Vargish (1991) for some interesting
illustrations.
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Figure 1.3: An observer that sees the object at rest at a viewing angle given
by sinα′ = δ sinα, will take the same picture as the observer that sees the
object moving and making an angle α with his/her line of sight. Note that
sinα′ = sin(2π − α′).

1.2.3 Rotation, not contraction

The net result (taking into account both the length contraction and the
different paths) is an apparent rotation of the square, as shown in Fig. 1.2
(right panel). The rotation angle α can be simply derived (even geometri-
cally) and is given by

cosα = β (1.10)

A few considerations follow:

• If you rotate a sphere you still get a sphere: you do not observe a
contracted sphere.

• The total length of the projected square, appearing on the film, is
ℓ′(β+1/Γ). It is maximum when the “rotation angle” α = 45◦ → β =
1/
√

2 → Γ =
√

2. This corresponds to the diagonal.

• The appearance of the square is the same as what seen in a comoving

frame for a line of sight making an angle α′ with respect to the velocity

vector, where α′ is the aberrated angle given by

sinα′ =
sinα

Γ(1 − β cosα)
= δ sinα (1.11)

See Fig. 1.3 for a schematic illustration.
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Figure 1.4: Difference between the proper time and the photons arrival time.
A lamp, moving with a velocity βc, emits photons for a time interval ∆t′e in
its frame K ′. The corresponding time interval measured by an observed at
an angle θ, who receives the photons produced by the lamp is ∆ta = ∆t′e/δ.

The last point is particularly important, because it introduces a great sim-
plification in calculating not only the appearance of bodies with a complex
shape but also the light curves of varying objects.

1.2.4 Time

Consider a lamp moving with velocity v = βc at an angle θ from the line
of sight. In K ′, the lamp remains on for a time ∆t′e. According to special
relativity (“without photons”) the measured time in frame K should be
∆te = Γ∆t′e (time dilation). However, if we use photons to measure the time
interval, we once again must consider that the first and the last photons have
been emitted in different location, and their travel path lengths are different.
In this case, to find out ∆ta, the time interval between the arrival of the
first and last photon, consider Fig. 1.4. The first photon is emitted in A,
the last in B. If these points are measured in frame K, then the path AB is

AB = βc∆te = Γβc∆t′e (1.12)

While the lamp moved from A to B, the photon emitted when the lamp was
in A has travelled a distance AC = c∆te, and is now in point D. Along the
direction of the line of sight, the first and the last photons (the ones emitted
in A and in B) are separated by CD. The corresponding time interval,



1.2. PHOTOGRAPHS AND LIGHT CURVES 11

CD/c, is the interval of time ∆ta between the arrival of the first and the
last photon:

∆ta =
CD

c
=

AD −AC

c
= ∆te − β∆te cos θ

= ∆te(1 − β cos θ)

= ∆t′eΓ(1 − β cos θ)

=
∆t′e
δ

(1.13)

If θ is small and the velocity is relativistic, then δ > 1, and ∆ta < ∆ts, i.e.
we measure a time contraction instead of time dilation. Note also that we
recover the usual time dilation (i.e. ∆ta = Γ∆t′e) if θ = 90◦, because in this
case all photons have to travel the same distance to reach us.

Since a frequency is the inverse of time, it will transform as

ν = ν ′ δ (1.14)

It is because of this that the factor δ is called the relativistic Doppler factor.

1.2.5 Aberration

Another very important effect happening when a source is moving is the
aberration of light. It is rather simple to understand, if one looks at Fig.
1.5. A source of photons is located perpendilarly to the right wall of a lift.
If the lift is not moving, and there is a hole in its right wall, then the ligth
ray enters in A and ends its travel in B. If the lift is not moving, A and
B are at the same heigth. If the lift is moving with a constant velocity
v to the top, when the photon smashes the right wall it has a different
location, and the point B will have, for a comoving observer, a smaller
height than A. The light ray path now appears oblique, tilted. Of course,
the greater v, the more tilted the light ray path appears. This immediately
stimulate the question: what happens if the lift, instead to move with a
constant velocity, is accelerating? This this example one can easily convince
him/herself that the “trajectory” of the photon would appear curved. Since,
by the equivalence principle, the accelerating lift cannot tell if there is an
engine pulling him up or if there is a planet underneath it, we can then say
that gravity bends the light rays, and make the space curved.

This helps to understand why angles, between two inertial frames, change.
Calling θ the angle between the direction of the emitted photon and the
source velocity vector, we have:

sin θ =
sin θ′

Γ(1 + β cos θ′)
; sin θ′ =

sin θ

Γ(1 − β cos θ)

cos θ =
cos θ′ + β

1 + β cos θ′
; cos θ′ =

cos θ − β

1 − β cos θ
(1.15)



12 CHAPTER 1. BEAMING

Figure 1.5: The relativistic lift, to explain relativistic aberration of light.
Assume first a non–moving lift, with a hole on the right wall. A light ray,
coming perpendiculrly to the left wall, enter through the wall in A and ends
its travel in B. If the lift is moving with a constant velocity v to the top,
its position is changed when the photon arrives to the left wall. For the
comoving observer, therefore, it appears that the light path is tilted, since
the point B where the photon smashes into the left wall is below the point
A. What happens if the lift, instead to move with a constant velocity, is
accelerating?

Note that, if θ′ = 90◦, then sin θ = 1/Γ and cos θ = β. Consider a souce
emitting isotropically in K ′. Halph of its photons are emitted in the emi-
sphere, namely, with θ′ ≤ 90◦. Then, in K, the same source will appear to
emit halph of its photons into a cone of semiaperture Γ.

Assuming symmetry around the angle φ, the transformation of the solid
angle dΩ is

dΩ = 2πd cos θ =
dΩ′

Γ2(1 + β cos θ′)2
= dΩ′ Γ2(1 − β cos θ)2 =

dΩ′

δ2
(1.16)

1.2.6 Intensity

We now have all the ingredients necessary to calculate the transformation
of the specific (i.e. monochromatic) and bolometric intensity. The specific
intensity has the unit of energy per unit surface, time, frequency and solid
angle. In cgs, the units are [erg cm−2 s−1 Hz−1 ster−1]. We can then write



1.2. PHOTOGRAPHS AND LIGHT CURVES 13

the specific intensity as

I(ν) = hν
dN

dt dν dΩ dA

= δhν ′
dN ′

(dt′/δ) δdν ′ (dΩ′/δ2) dA′

= δ3 I ′(ν ′) = I ′(ν/δ) (1.17)

Note that dN = dN ′ because it is a number, and that dA = dA′ because it
is an area perpendicular to the velocity. If we integrate over frequencies we
obtain the bolometric intensity which transforms as

I = δ4I ′ (1.18)

The fourth power of δ can be understood in a simple way: one power comes
from the transformation of the frequencies, one for the time, and two for
the solid angle. They all add up. This transformation is at the base of our
understanding of relativistic sources, namely radio–loud AGNs, gamma–ray
bursts and galactic superluminal sources.

1.2.7 Luminosity and flux

The transformation of fluxes and luminosities from the comoving to the
observer frames is not trivial. The most used formula is L = δ4L′, but this
assumes that we are dealing with a single, spherical blob. It can be simply
derived by noting that L = 4πd2

LF , where F is the observed flux, and by
considering that the flux, for a distance source, is F ∝

∫

Ωs
IdΩ. Since Ωs is

the source solid angle, which is the same in the two K and K ′ frames, we
have that F transforms like I, and so does L. But the emission from jets
may come not only by a single spherical blob, but by, for instance, many
blobs, or even by a continuos distribution of emitting particles flowing in
the jet. If we assume that the walls of the jet are fixed, then the concept of
“comoving” frame is somewhat misleading, because if we are comoving with
the flowing plasma, then we see the walls of the jet which are moving.

A further complication exists if the velocity is not uni–directional, but
radial, like in gamma–ray bursts. In this case, assume that the plasma is
contained in a conical narrow shell (width smaller than the distance of the
shell from the apex of the cone). The observer which is moving together
with a portion of the plasma, (the nearest case of a “comoving observer”)
will see the plasma close to her going away from her, and more so for more
distant portions of the plasma. Indeed, there could be a limiting distance
beyond which the two portions of the shells are causally disconnected.

Useful references are Lind & Blandford (1985) and Sikora et al. (1997).
The (frequency integrated) emissivity j is the energy emitted per unit

time, solid angle and volume. We generally have that the intensity, for an
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otpically thin source, is I =
∫

∆R jdr, where ∆R is the length of the region
containing the emitting particles. This quantity transforms like j = j′δ3,
namely with one power of δ less than the intensity.

Figure 1.6: Due to aberration of light, the travel path of the a light ray is
different in the two frames K and K ′

To understand why, consider a slab with plasma flowing with a velocity
parallel to the walls of the slab, as in Fig. 1.6. The observer in K will
measure a certain ∆R which depends on her viewing angle. In K ′ the same
path has a different length, because of the aberration of light. The height
of the slab h′ = h, since it is perpendicular to the velocity. The light ray
travels a distance ∆R = h/ sin θ in K, and the same light ray travels a
distance ∆R′ = h′/ sin θ′ in K ′. Since sin θ′ = sin θδ, then ∆R′ = δR/δ.
Therefore the column of plasma contributing to the emission, for δ > 1,
is less than what the observer in K would guess by measuring ∆R. For
semplicity, assume that the plasma is homogenous, allowing to simply write
I = j∆R. In this case:

I = j∆R = δ4I ′ = δ4j′∆R′ → j = δ3j′ (1.19)

And the corresponding transformation for the specific emissivity is j(ν) =
δ2j′(ν ′).

Fig. 1.7 illustrates another interesting example, taken from the work
of Sikora et al. (1997). Consider that within a distance R from the apex
of a jet (R measured in K), at any given time there are N blobs (10 on
the specific example of Fig. 1.7), moving with a velocity v = βc along the
jet. To fix the ideas, let assume that beyond R they switch off. If the
viewing angle is θ = 90◦, the photons emitted by each blob travel the same
distance to reach the observer, who will see all the 10 blobs. But if θ < 90◦,
the photons produced by the rear blobs must travel for a longer distance in
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Figure 1.7: Due to the differences in light travel time, the number of blobs
that can be observed simultaneously at any given time depends on the view-
ing angle and the velocity of the blobs. In the top panel the viewing angle
is θ = 90◦ and all the blobs contained within a certain distance R can be
seen. For smaller viewing angles, less blobs are seen. This is because the
photons emitted by the rear blobs have more distance to travel, and there-
fore they have to be emitted before the photons produced by the front blob.
Decreasing the viewing angle θ we see less blobs (3 for the case illustrated
in the bottom panel).

order to reach the observer, and therefore they have to be emitted before the
photons produced by the front blob. The observer will then see less blobs.
To be more quantitative, consider a viewing angle θ < 90◦. Photons emitted
by blob numer 3 to reach blobs number 1 when it produces its last photon
(before to switch off) were emitted when the blobs itself was just born (it was
crossing point A). They travelled a distance R cos θ in a time ∆t. During
the same time, the blob number 3 travelled a distance ∆R = cβ∆t in the
forward direction. The fraction f of blobs that can be seen is then

f =
R− ∆R

R
= 1 − cβ∆t

R
= 1 − β cos θ (1.20)

Where we have used the fact that ∆t = (R/c) cos θ. This is the usual
Doppler factor. We may multiply and divide by Γ to obtain

f =
1

Γδ
(1.21)
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The bottom line is the following: even if the flux from a single blob is boosted
by δ4, if the jet is made by many (N) equal blobs, the total flux is not just
boosted by Nδ4 times the intrinsic flux of a blob, because the observer will
see less blobs if θ < 90◦.

1.2.8 Brightness Temperature

The brightness temperature is a quantity used especially in radio astronomy,
and it is defined by

TB ≡ I(ν)

2k

c2

ν2
=

F (ν)

2πk θ2
s

c2

ν2
(1.22)

where we have assumed that the solid angle subtended by the source is
∆Ωs ∼ πθ2

s , and that the received flux is F (ν) = ∆ΩsI(ν). There are 2
ways to measure θs:

1. from VLBI observations, one can often resolve the source and hence
directly measure the angular size. In this case the relation between
the brightness temperature measured in the K and K ′ frames is

TB =
δ3F ′(ν ′)

2πk θ2
s

c2

δ2(ν ′)2
= δ T ′

B (1.23)

2. If the source is varying, we can estimate its size by requiring that the
observed variability time–scale ∆tvar is longer than the light travel
time R/c, where R is the typical radius of the emission region. In this
case

TB >
δ3F ′(ν ′)

2πk

d2
Aδ

2

(c∆t′var)
2

c2

δ2(ν ′)2
= δ3 T ′

B (1.24)

where dA is the angular distance, related to the luminosity distance
dL by dA = dL/(1 + z)2.

There is a particular class of extragalactic radio sources, called Intra–
Day Variable (IDV) sources, showing variability time–scales of hours in the
radio band. For them, the corresponding observed brightess temperature
can exceed 1016 K, a value much larger than the theoretical limit for an
incoherent synchrotron source, which is between 1011 and 1012 K. If the
variability is indeed intrinsic, namely not produced by interstellar scintilla-
tion, then one would derive a limit on the beamig factor δ, which should be
larger than about 100.

1.2.9 Moving in an homogeneous radiation field

Jets in AGNs often moves in an external radiation field, produced by, e.g.
the accretion disk, ot by the Broad Line Region (BLR) which intercept a
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fraction of the radiation produved by the disk and re–emit it in the form
of emission lines. It it therefore interesting to calculate what is the energy
density seen by a an observer which is comoving with the jet plasma.

Figure 1.8: A real case: a relativistic bob is moving with the Broad Line
Region of a radio loud AGN, with Lorentz factor Γ. In the rest frame K ′ of
the blob the photons coming from 90◦ in frame K are seen to come at an
angle 1/Γ. The energy density as seen by the blob is enhanced by a factor
∼ Γ2.

To make a specific example, as illistrated bu Fig. 1.8, assume that a
portion of the jet is moving with a bulk Lorentz factor Γ, velocity βc and
that it is surrounded by an shell of broad line clouds. For simplicity, assume
that the broad line photons are produced by the surface of a sphere of
radius R and that the jet is within it. Assume also that the radiation is
monochromatic at sum frequency ν0 (in frame K). The comoving (in frame
K ′) observer will see photons coming from an emisphere (the other half may
be hidden by the accretion disk): photons coming from the forward direction
are seen blue-shifted by a factor (1 + β)Γ, while photons that the observer
in K sees as coming from the side (i.e. 90◦ degrees) will be observed in K ′

as coming by an angle given by sin θ′ = 1/Γ (and cos θ′ = β) and will be
blue–shifted by a factor Γ. As seen in K ′, each element of the BLR surface is
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moving in the opposite direction of the actual jet velocity, and the photons
emitted by this element form an angle θ′ with respect the element velocity.
The Doppler factor used by K ′ is then

δ′ =
1

Γ(1 − β cos θ′)
(1.25)

The intensity coming from each element is seen boosted as (cfr Eq. 1.2.9):

I ′ = δ′4I (1.26)

The radiation energy density is the integral over the solid angle of the in-
tensity, divided by c:

U ′ =
2π

c

∫ 1

β
I ′d cos θ′

=
2π

c

∫ 1

β

I

Γ4(1 − β cos θ′)4
d cos θ′

=

(

1 + β +
β2

3

)

Γ2 2πI

c

=

(

1 + β +
β2

3

)

Γ2 U (1.27)

Note that the limits of the integral correspond to the angles 0′ and 90◦ in
frame K. The radiation energy density, in frame K ′, is then boosted by a
factor (7/3)Γ2 when β ∼ 1. Doing the same calculation for a sphere, one
would obtain U ′ = Γ2U .

Furthermore a (monochromatic) flux in K is seen, in K ′, at different
frequencies, between Γν0 and (1 + β)Γν0, with a slope F ′(ν ′) ∝ ν ′2. Why
the slope ν ′2? This can be derived as follows: we already know that I ′(ν ′) =
δ′3I(ν) = (ν ′/ν)3I(ν). The flux at a specific frequency is

F ′(ν ′) = 2π

∫ µ′

2

µ′

1

dµ′
(

ν ′

ν

)3

I(ν) (1.28)

where µ′ ≡ cos θ′, and the integral is over those µ′ contributing at ν ′. Since

ν ′

ν
= δ′ =

1

Γ(1 − βµ′)
→ µ′ =

1

β

(

1 − ν

Γν ′

)

(1.29)

we have

dµ′ = − dν

βΓν ′
(1.30)

Therefore, if the intensity is monochromatic in frame K, i.e. I(ν) = I0δ(ν−
ν0), the flux density in the comoving frame is

F ′(ν ′) = 2π

∫ ν1

ν2

dν

βΓν ′

(

ν ′

ν

)3

I0δ(ν − ν0)

=
2π

Γβ

I0
ν3
0

ν ′2; Γν0 ≤ ν ′ ≤ (1 + β)Γν0 (1.31)
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where the frequency limits corresponds to photons produced in an emisphere
in frame K, and between 0◦ and sin θ′ = 1/Γ in frame K ′. Integrating Eq.
2.25 over frequency, one obtains

F ′ = 2πI0Γ
2

(

1 + β +
β2

3

)

= Γ2

(

1 + β +
β2

3

)

F (1.32)

in agreement with Eq. 1.27.

ν = ν ′δ frequency
t = t′/δ time
V = V ′δ volume
sin θ = sin θ′/δ sine
cos θ = (cos θ′ + β)/(1 + β cos θ′) cosine
I(ν) = δ3I ′(ν ′) specific intensity
I = δ4I ′ total intensity
j(ν) = j′(ν ′)δ2 specific emissivity
κ(ν) = κ′(ν ′)/δ absorption coefficient
TB = T ′

Bδ brightn. temp. (size directly measured)
TB = T ′

Bδ
3 brightn. temp. (size from variability)

Table 1.1: Useful relativistic transformations

1.3 A question

Suppose that some plasma of mass m is falling onto a central object with a
velocity v and bulk Lorentz factor Γ. The central object has mass M and
produces a luminosity L. Assume that the interaction is through Thomson
scattering and that there are no electron–positron pairs.

a) What is the radiation force acting on the electron?
b) What is the gravity force acting on the proton?
c) What definition of limiting (“Eddington”) luminosity would you give

in this case?
d) What happens if the plasma is instead going outward?
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Chapter 2

Synchrotron emission and

absorption

2.1 Introduction

We now know for sure that many astrophysical sources are magnetized and
have relativistic leptons. Magnetic field and relativistic particles are the two
ingredients to have synchrotron radiation. What is responsible for this kind
of radiation is the Lorentz force, making the particle to gyrate around the
magnetic field lines. Curiously enough, this force does not work, but makes
the particles to accelerate even if their velocity modulus hardly changes.

The outline of this section is:

1. We will derive the total power emitted by the single electron. Total
means integrated over frequency and over emission angles. This will
require to generalize the Larmor formula to the relativistic case;

2. We will then outline the basics of the spectrum emitted by the single
electron. This is treated is several text–books, so we will concentrate
on the basic concepts;

3. Spectrum from an ensemble of electrons. Again, only the basics;

4. Synchrotron self absorption. We will try to discuss things from the
point of view of a photon, that wants to calculate its survival proba-
bility, and also the point of view of the electron, that wants to calculate
the probability to absorb the photon, and then increase its energy and
momentum.

2.2 Total losses

To calculate the total (=integrated over frequencies and emission angles)
synchrotron losses we go into the frame that is instantaneously at rest with

21
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the particle (in this frame v is zero, but not the acceleration!). This is
because we will use the fact that the emitted power is Lorentz invariant:

Pe = P ′
e =

2e2

3c3
a′2 =

2e2

3c3

[

a′2‖ + a′2⊥

]

(2.1)

where the subscript “e” stands for “emitted”. The fact that the power is
invariant sounds natural, since after all, power is energy over time, and both
energy and time transforms the same way (in special relativity with rulers
and clocks). But be aware that this does not mean that the emitted and
received power are the same. They are not!

The problem is now to find how the parallel (to the velocity vector) and
perpendicular components of the acceleration Lorentz transform. This is
done in text books, so we report the results:

a′‖ = γ3a‖

a′⊥ = γ2a⊥ (2.2)

where γ is the particle Lorentz factor. One easy way to understand and re-
member these transformations is to recall that the acceleration is the second
derivative of space with respect to time. The perpendicular component of
the displacement is invariant, so we have only to transform (twice) the time
(factor γ2). The parallel displacement instead transforms like γ, hence the
γ3 factor.

The generalization of the Larmor formula is then:

Pe = P ′
e =

2e2

3c3

[

a′2‖ + a′2⊥

]

=
2e2

3c3
γ4

[

γ2a2
‖ + a2

⊥

]

(2.3)

Don’t be fooled by the γ2 factor in front of a2
‖... this component of the power

is hardly important: since the velocity, for relativistic particles, is always
close to c, it implies that one can get very very small acceleration in the same
direction of the velocity. This is why linear accelerators minimize radiation
losses. For synchrotron machines, instead, the losses due to radiation can be
the limiting factor, and they are of course due to a⊥: changing the direction

of the velocity means large accelerations, even without any change in the
velocity modulus. To go further, we have to calculate the two component of
the acceleration for an electron moving in a magnetic field. Its trajectory,
in general, will have an helical shape of radius rL (the Larmor radius). The
angle that the velocity vector makes with the magnetic field line is called
pitch angle. Let us denote it with θ. We can anticipate that, in the absence
of electric field and for a homogeneous magnetic field, the modulus of the
velocity will not change: the magnetic field does not work, and so there is
no change of energy, except for the losses due to the synchrotron radiation
itself. So one important assumption is that at least during one gyration, the
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Figure 2.1: A particle gyrates along the magnetic field lines. Its trajectory
has an helicoidal shape, with Larmor radius rL and pitch angle θ.

losses are not important. This is almost always satisfied in astrophysical
settings, but there are indeed some cases where this is not true.

When there is no electric field the only acting force is the (relativistic)
Lorentz force:

FL =
d

dt
(γmv) =

e

c
v ×B (2.4)

The parallel and perpendicular components are

FL‖ = e v‖B = 0 → a‖ = 0

FL⊥ = γm
dv⊥
dt

= e
v⊥
c
B → a⊥ =

evB sin θ

γmc
(2.5)

We can also derive the Larmor radius rL by setting a⊥ = v2
⊥/rL, and so

rL =
v2
⊥

a⊥
=

γmc2β sin θ

eB
(2.6)

The fundamental frequency is the inverse of the time occurring to complete
one orbit (gyration frequency), so νB = cβ sin θ/(2πrL), giving

νB =
eB

2πγmc
=

νL

γ
(2.7)
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where νL is the Larmor frequency, namely the gyration frequency for sub–
relativistic particles. Larger B means smaller rL, hence greater gyration
frequencies. Vice–versa, larger γ means larger inertia, thus larger rL, and
smaller gyration frequencies. Substituting a⊥ given in Eq. 2.5 in the gener-
alized Larmor formula (Eq. 2.3) we get:

PS =
2e4

3m2c3
B2γ2β2 sin2 θ (2.8)

We can make it nicer (for future use) by recalling that:

• The magnetic energy density is UB ≡ B2/(8π)

• the quantity e2/(mec
2), in the case of electrons, is the classical electron

radius r0

• the square of the electron radius is proportional to the Thomson scat-
tering cross section σT, i.e. σT = 8πr20/3 = 6.65 × 10−25 cm2.

Making these substitutions, we have that the synchrotron power emitted by
a single electron of given pitch angle is:

PS(θ) = 2σTcUBγ
2β2 sin2 θ (2.9)

In the case of an isotropic distribution of pitch angles we can average the
term sin2 θ over the solid angle. The result is 2/3, giving

〈PS〉 =
4

3
σTcUBγ

2β2 (2.10)

Now pause, and ask yourself:

• Is PS valid only for relativistic particles, or does it describe correctly
the radiative losses also for sub–relativistic ones?

• In the relativistic case the losses are proportional to the square of the
electron energy. Do you understand why? And for sub–relativistic
particles?

• What happens of we have protons, instead of electrons?

• What happens for θ → 0? Are you sure? (that losses vanishes..). Ok,
but what happens to the received power when you have the lines of
the magnetic field along the line of sight, and a beam of particles, all
with a small pitch angles, shooting at you?

• Why on earth there is the scattering cross section? Is this a coincidence
or does it hide a deeper fact?
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2.2.1 Synchrotron cooling time

When you want to estimate a timescale of a quantity A, you can always
write t = A/Ȧ. In our case A is the energy of the particle. For electrons
with an isotropic pitch angle distribution we have

tsyn =
E

〈PS〉
=

γmec
2

(4/3)σTcUBγ2β2
∼ 7.75 × 108

B2γ
s =

24.57

B2γ
yr (2.11)

In the vicinity of a supermassive AGN black hole we can have B = 103B3

Gauss and γ = 103γ3, yielding tsyn = 0.75/(B2
3γ3) s. The same electron, in

the radio lobes of a radio loud quasars with B = 10−5B−5 Gauss, cools in
tsyn = 246 million years.

2.3 Spectrum emitted by the single electron

2.3.1 Basics

There exists a typical frequency associated to the synchrotron process. This
is related to the inverse of a typical time. If the electron is relativistic, this
is not the revolution period. Instead, it is the fraction of the time, for each
orbit, during which the observer receives some radiation. To simplify, con-
sider an electron with a pitch angle of 90◦, and look at Fig. 2.2, illustrating
the typical patterns of the produced radiation for sub–relativistic electrons
moving with a velocity parallel (top panel) or perpendicular (mid panel) to
the acceleration. In the bottom panel we see the pattern for a relativistic
electron (with v ⊥ a): it is strongly beamed in the forward direction. This is
the direct consequence of the aberration of light, making half of the photons
be emitted in a cone of semi–aperture angle 1/γ (which is called the beaming

angle). Note that this does not mean that half of the power is emitted within
1/γ, because the photons inside the beaming cone are more energetic than
those outside, and are more tightly packed (do you remember the δ4 factor
when studying beaming?).

To go further, recall what we do when we study a time series and we
want to find the power spectrum: we Fourier transform it. In this case we
must do the same. Therefore if there is a typical timescale during which we
receive most of the signal, we can say that most of the power is emitted at
a frequency that is the inverse of that time.

Look at Fig. 2.3: the relativistic electron emits photons all along its
orbit, but it will “shoot” in a particular direction only for the time

∆te ∼ AB

v
=

2πrL
2γv

=
2

γνB
(2.12)

where we made use of the the definition νB ≡ v/(2πrL). This is the emitting

time during which the electron emits photons that will reach the observer.
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Figure 2.2: Radiation patterns for a non relativistic particle with the velocity
parallel (top) or perpendicular (mid) to the acceleration. When the particle
is relativistic, the pattern strongly changes due to the aberration of light,
and is strongly beamed in the forward direction.

We can approximate the arc AB with a straight segment if the electron is
relativistic, and the observed will then measure an arrival time ∆tA that is
shorter than ∆te:

∆tA = ∆te (1 − β) = ∆te
(1 − β2)

1 + β
∼ ∆te

2γ2
=

1

γ3νB
(2.13)

The inverse of this time is the typical synchrotron frequency:

νs =
1

∆tA
= γ3νB = γ2 eB

2πmec
(2.14)

This is a factor γ3 greater than the fundamental frequency, and a factor γ2

greater than the Larmor frequency, defined as the typical frequency of non–
relativistic particles. We expect that the particle emits most of its power at
this frequency.

2.3.2 The real stuff

One can look at any text book for a detailed discussion of the procedure
to calculate the spectrum emitted by the single particle. Here we report
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Figure 2.3: A relativistic electron is gyrating along a magnetic field line
with pitch angle 90◦. Its trajectory is then a circle of radius rL. Due to
aberration, an observer will “see it” (i.e. will measure an electric field)
when the beaming cone of total aperture angle 2/γ is pointing at him.

the results: the power per unit frequency emitted by an electron of given
Lorentz factor and pitch angle is:

Ps(ν, γ, θ) =

√
3e3B sin θ

mec2
F (ν/νc)

F (ν/νc) ≡ ν

νc

∫ ∞

ν/νc

K5/3(y)dy

νc ≡ 3

2
νs sin θ (2.15)

This is the power integrated over the emission pattern. K5/3(y) is the
modified Bessel function of order 5/3. The dependence upon frequency
is contained in F (ν/νc), that is plotted in Fig. 2.4. This function peaks at
ν ∼ 0.29νc, therefore very close to what we have estimated before, in our
very approximate treatment. The low frequency part is well approximated
by a power law of slope 1/3:

F (ν/νc) → 4π√
3Γ(1/3)

(

ν

2νc

)1/3

(ν ≪ νc) (2.16)

At ν ≫ νc the function decays exponentially, and can be approximated by:

F (ν/νc) →
(π

2

)1/2
(

ν

νc

)1/2

e−ν/νc (ν ≫ νc) (2.17)
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Figure 2.4: Top panel: The function F (ν/νc) describing the synchrotron
spectrum emitted by the single electron. Bottom panel: F (ν/νc) is com-
pared with some approximating formulae, as labeled. We have defined
x ≡ ν/νc.
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Another approximation valid for all frequency, but overestimating F around
the peak, is:

F (ν/νc) ∼ 4π√
3Γ(1/3)

(

ν

2νc

)1/3

e−ν/νc (2.18)

2.3.3 Limits of validity

One limit can be obtained by requiring that, during one orbit, the emitted
energy is much smaller than the electron energy. If not, the orbit is modified,
and our calculations are no more valid. For non–relativistic electrons this
translates in demanding that

hνB < mec
2 → B <

2πm2
ec

3

he
≡ Bc (2.19)

where Bc ∼ 4.4×1013 Gauss is the critical magnetic field, around and above
which quantum effects appears (i.e. quantized orbits, Landau levels and so
on).

For relativistic particles we demand that the energy emitted during one
orbit does not exceed the energy of the particle.

Ps

νB
< γmec

2 → B <
e/σT

γ2 sin2 θ
∼ 7.22 × 1014

γ2 sin2 θ
Gauss (2.20)

Therefore for large γ we reach the validity limit even if the magnetic field is
sub–critical.

For very small pitch angles beware that the spectrum is not described
by F (ν/νc), but consists of a blue-shifted cyclotron line. This is because, in
the gyroframe, the particle is sub–relativistic, and so it emits only one (or
very few) harmonics, that the observer sees blueshifted.

2.3.4 From cyclotron to synchrotron emission

A look at Fig. 2.5 helps to understand the difference between cyclotron
and synchrotron emission. When the particle is very sub–relativistic, the
observed electric field is sinusoidal in time. Correspondingly, the Fourier
transform of E(t) gives only one frequency, the first harmonic. Increasing
somewhat the velocity (say, β ∼ 0.01) the emission pattern starts to be
asymmetric (for light aberration) and as a consequence E(t) must be de-
scribed by more than just one sinusoid, and higher order harmonics appear.
In these cases the ratio of the power contained in successive harmonics goes
as β2.

Finally, for relativistic (i.e. γ ≫ 1) particles, the pattern is so asym-
metric that the observers sees only spikes of electric field. They repeat
themselves with the gyration period, but all the power is concentrated into
∆tA. To reproduce E(t) in this case with sinusoids requires a large number
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of them, with frequencies going at least up to 1/∆tA. In this case the har-
monics are many, guaranteeing that the spectrum becomes continuous with
any reasonable line broadening effect, and the power is concentrated at high
frequencies.

2.4 Emission from many electrons

Again, this problem is treated in several text books, so we repeat the basic
results using some approximations, tricks and shortcuts.

The queen of the particle energy distributions in high energy astrophysics
is the power law distribution:

N(γ) = K γ−p = N(E)
dE

dγ
; γminγ < γmax (2.21)

Now, assuming that the distribution of pitch angles is the same at low and
high γ, we want to obtain the synchrotron emissivity produced by these par-
ticles. Beware that the emissivity is the power per unit solid angle produced
within 1 cm3. The specific emissivity is also per unit of frequency. So, if Eq.
2.21 represents a density, we should integrate over γ the power produced by
the single electron (of a given γ) times N(γ), and divide all it by 4π, if the
emission is isotropic:

ǫs(ν, θ) =
1

4π

∫ γmax

γmin

N(γ)P (γ, ν, θ)dγ (2.22)

Doing the integral one easily finds that, in an appropriate range of frequen-
cies:

ǫs(ν, θ) ∝ KB(p+1)/2ν−(p−1)/2 (2.23)

The important thing is that a power law electron distribution produces a
power law spectrum, and the two spectral indices are related. We tradition-
ally call α the spectral index of the radiation, namely ǫs ∝ ν−α. We then
have

α =
p− 1

2
(2.24)

This result is so important that it is worth to try to derive it in a way as
simple as possible, even without doing the integral of Eq. 2.22. We can
in fact use the fact that the synchrotron spectrum emitted by the single
particle is peaked. We can then say, without being badly wrong, that all
the power is emitted at the typical synchrotron frequency:

νs = γ2νL; νL ≡ eB

2πmec
(2.25)

In other words, there is a tight correspondence between the energy of the
electron and the frequency it emits. To simplify further, let us assume that
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Figure 2.5: From cyclo to synchro: if the emitting particle has a very small
velocity, the observer sees a sinusoidal (in time) electric field E(t). Increas-
ing the velocity the pattern becomes asymmetric, and the second harmonic
appears. For 0 < β ≪ 1 the power in the second harmonic is a factor β2 less
than the power in the first. For relativistic particles, the pattern becomes
strongly beamed, the emission is concentrated in the time ∆tA. As a con-
sequence the Fourier transformation of E(t) must contain many harmonics,
and the power is concentrated in the harmonics of frequencies ν ∼ 1/∆tA.
Broadening of the harmonics due to several effects ensures that the spec-
trum in this case becomes continuous. Note that the fundamental harmonic
becomes smaller increasing γ (since νB ∝ 1/γ).
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the pitch angle is 90◦. The emissivity at a given frequency, within an interval
dν, is then the result of the emission of electrons having the appropriate
energy γ, within the interval dγ

ǫs(ν)dν =
1

4π
PsN(γ)dγ; γ =

(

ν

νL

)1/2

;
dγ

dν
=
ν−1/2

2ν
1/2
L

(2.26)

we then have

ǫs(ν) ∝ B2γ2Kγ−pdγ

dν

∝ B2K

(

ν

νL

)(2−p)/2 ν−1/2

ν
1/2
L

∝ KB(p+1)/2 ν−(p−1)/2 (2.27)

where we have used νL ∝ B.

The synchrotron flux received from a homogeneous and thin source of
volume V ∝ R3, at a distance dL, is

Fs(ν) = 4πǫs(ν)
V

4πd2
L

∝ R3

d2
L

KB1+αν−α

∝ θ2
sRKB

1+αν−α (2.28)

where θs is the angular radius of the source (not the pitch angle!). Observing
the source at two different frequencies allows to determine α, hence the slope
of the particle energy distribution. Furthermore, if we know the distance
and R, the normalization depends on the particle density and the magnetic
field: two unknowns and only one equation. We need another relation to
close the system. As we will see in the following, this is provided by the
self–absorbed flux.

2.5 Synchrotron absorption: photons

All emission processes have their absorption counterpart, and the synchrotron
emission is no exception. What makes synchrotron special is really the fact
that it is done by relativistic particles, and they are almost never distributed
in energy as a Maxwellian. If they were, we could use the well known fact
that the ratio between the emissivity and the absorption coefficient is equal
to the black body (Kirchhoff law) and then we could easily find the absorp-
tion coefficient. But in the case of a non–thermal particle distribution we
cannot do that. Instead we are obliged to go back to more fundamental
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relations, the one between the A and B Einstein coefficients relating spon-
taneous and stimulated emission and “true” absorption (by the way, recall
that the absorption coefficient is what remains subtracting stimulated emis-
sion from “true” absorption). But we once again will use some tricks, in
order to be as simple as possible. These are the steps:

1. The first trick is to think to our power law energy distribution as a
superposition of Maxwellians, of different temperatures. So, we will
relate the energy γmec

2 of a given electron to the energy kT of a
Maxwellian.

2. We have already seen that there is a tight relation between the emitted
frequency and γ. Since the emission and absorption processes are
related, we will assume that a particular frequency ν is preferentially
absorbed by those electrons that can emit it.

3. As a consequence, we can associate our “fake” temperature to the
frequency:

kT ∼ γmec
2 ∼ mec

2

(

ν

νL

)1/2

(2.29)

4. For an absorbed source the brightness temperature Tb, defined by

I(ν) ≡ 2kTb
ν2

c2
(2.30)

must be equal to the kinetic “temperature” of the electrons, and so

I(ν) ≡ 2kT
ν2

c2
∼ 2me ν

2

(

ν

νL

)1/2

∝ ν5/2

B1/2
(2.31)

These are the right dependencies. Note that the spectrum is ∝ ν5/2, not
ν2, and this is the consequence of having “different temperatures”. Note
also that the particle density disappeared: if you think about it is natural:
the more electrons you have, the more you emit, but the more you absorb.
Finally, even the slope of the particle distribution is not important, it controls
(up to a factor of order unity) only the normalization of I(ν) (our ultra–
simple derivation cannot account for it, see the Appendix).

The above is valid as long as we can associate a specific γ to any ν.
This is not always the case. Think for instance to a cut–off distribution,
with γmin ≫ 1. In this case the electrons with γmin are the most efficient
emitters and absorbers of all photons with ν < νmin ≡ γ2

minνL. So in this case
we should not associate a different temperature when dealing with different
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Figure 2.6: The synchrotron spectrum from a partially self absorbed source.
Observations of the self absorbed part could determine B. Observations of
the thin part can then determine K and the electron slope p.

ν < νmin. But if do not change T , we recover a self–absorbed intensity
I(ν) ∝ ν2 (i.e. Raleigh–Jeans like).

Now, going from the intensity to the flux, we must integrate I(ν) over
the angular dimension of the source (i.e. θs), obtaining

F (ν) ∝ θ2
s

ν5/2

B1/2
(2.32)

if we could observe a self–absorbed source, of known angular size, we could
then derive its magnetic field even without knowing its distance.

2.5.1 From thick to thin

To describe the transition from the self absorbed to the thin regime we have
to write the radiation transfer equation. The easiest one is for a slab. Calling
κν the specific absorption coefficient [cm−1] we have

I(ν) =
ǫ(ν)

κν
(1 − e−τν ); τν ≡ Rκν (2.33)

it is instructive to write Eq. 2.33 in the form:

I(ν) = ǫ(ν)R
1 − e−τν

τν
(2.34)

because in this way it is evident that when τν ≫ 1 (self absorbed regime),
we simply have

I(ν) =
ǫ(ν)R

τν
=

ǫ(ν)

κν
; τν ≫ 1 (2.35)
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Figure 2.7: The synchrotron absorption cross section as a function of ν/νL

for different values of γ, as labeled, assuming a pitch angle of θ = 90◦ and a
magnetic field of 1 Gauss.

One can interpret it saying that the intensity is coming from electrons lying
in a region R/τν .

Since we have already obtained I(ν) ∝ ν5/2B−1/2 in the absorbed regime,
we can derive the dependencies of the absorption coefficient:

κν =
ǫ(ν)

I(ν)
∝ KB(p+1)/2ν−(p−1)/1

ν5/2B−1/2
= KB(p+2)/2ν−(p+4)/2 (2.36)

Note the rather strong dependence upon frequency: at large frequencies,
absorption is small.

The obvious division between the thick and thin regime is when τν = 1.
We call self–absorption frequency, νt, the frequency when this occurs. We
then have:

τνt
= Rκνt

= 1 → νt ∝
[

RK B(p+2)/2
]2/(p+4)

(2.37)

The self–absorption frequency is a crucial quantity for studying synchrotron
sources: part of the reason is that it can be thought to belong to both regimes
(thin and thick), the other reason is that the synchrotron spectrum peaks
very close to νt (see Fig. 2.6) even if not exactly at νt (see the Appendix).

2.6 Synchrotron absorption: electrons

In the previous section we have considered what happens to the emitted
spectrum when photons are emitted and absorbed. This is described by
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the absorption coefficient. But now imagine to be an electron, that emits
and absorbs synchrotron photons. You would probably be interested if your
budget is positive or negative, that is, if you are loosing or gaining energy.
This is most efficiently described by a cross section, that tells you the prob-
ability to absorb a photon. Surprisingly, the synchrotron absorption cross
section has been derived relatively recently (Ghisellini and Svensson 1991),
and its expression is:

σs(ν, γ, θ) =
16π2

3
√

3

e

B

1

γ5 sin θ
K5/3

(

ν

νc sin θ

)

(2.38)

For frequencies ν ≪ νc this expression can be approximated by:

σs(ν, γ, θ) =
8π2(3 sin θ)2/3Γ(5/3)

3
√

3

e

B

(

ν

νL/γ

)−5/3

; ν ≪ νc (2.39)

Note these features:

• At the fundamental frequency νL/γ, the cross section does not depend
on γ.

• The dimensions are given by e/B: this factor is proportional to the
product of the classical electron radius and the Larmor wavelength (or
radius). Imagine an electron with 90◦ pitch angle, and to see its orbit
from the side: you would see a rectangle of base rL and height r0. The
area of this rectangle is of the order of e/B. At low frequencies, σs

can be orders of magnitudes larger than the Thomson scattering cross
section.

• There is no explicit dependence on the particle mass. However, protons
have much smaller νL, and the dependence on mass is hidden there.
Nevertheless, electrons and protons have the same cross section (of
order e/B) at their respective fundamental frequencies.

Fig. 2.7 shows σs as a function of ν/νL for different γ. The thing it
should be noticed is that this cross section is really large. Can we make
some useful use of it? Well, there are at least two issues, one concerning
energy, and the other concerning momentum.

First, electrons emitting and absorbing synchrotron photons do so with
a large efficiency. They can talk each other by exchanging photons. There-
for, even if they are distributed as a power law in energy at the beginning,
they will try to form a Maxwellian. They will form it, as long as other
competing processes are not important, such as inverse Compton scatter-
ings. The formation of the Maxwellian will interest only the low energy part
of the electron distribution, where absorption is important. Note that this
thermalization process works exactly when Coulomb collisions fail: they are
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inefficient at low density and high temperature, while synchrotron absorp-
tion can work for relativistic electrons even if they are not very dense.

The second issue concerns exchange of momentum between photons and
electrons. Suppose that a magnetized region with relativistic electrons is
illuminated by low frequency radiation by another source, located aside.
The electrons will efficiently absorb this radiation, and thus its momentum.
The magnetized region will then accelerate.
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Chapter 3

Appendix: Useful Formulae

In this section we collect several useful formulae concerning the synchrotron
emission. When possible, we give also simplified analytical expressions. We
will often consider that the emitting electrons have a distribution in energy
which is a power law between some limits γ1 and γ2. Electrons are assumed
to be isotropically distributed in the comoving frame of the emitting source.
Their density is

N(γ) = Kγ−p; γ1 < γ < γ2 (3.1)

The Larmor frequency is defined as:

νL ≡ eB

2πmec
(3.2)

3.1 Synchrotron

3.1.1 Emissivity

The synchrotron emissivity ǫs(ν, θ) [erg cm−3 s−1 sterad−1] is

ǫs(ν, θ) ≡ 1

4π

∫ γ2

γ1

N(γ)Ps(ν, γ, θ)dγ (3.3)

where Ps(ν, γ, θ) is the power emitted at the frequency ν (integrated over
all directions) by the single electron of energy γmec

2 and pitch angle θ.
For electrons making the same pitch angle θ with the magnetic field, the
emissivity is

ǫs(ν, θ) =
3σTcKUB

8π2νL

(

ν

νL

)− p−1
2

(sin θ)
p+1
2 3

p

2

Γ
(

3p−1
12

)

Γ
(

3p+19
12

)

p+ 1
(3.4)

39
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between ν1 ≫ γ2
1νL and ν2 ≪ γ2

2νL . If the distribution of pitch angles is

isotropic, we must average the (sin θ)
p+1
2 term, obtaining

< (sin θ)
p+1
2 >=

∫ π

2

0
(sin θ)

p+1
2 sin θdθ =

√
π

2

Γ
(

p+5
4

)

Γ
(

p+7
4

) (3.5)

Therefore the pitch angle averaged synchrotron emissivity is

ǫs(ν) =
3σTcKUB

16π
√
πνL

(

ν

νL

)− p−1
2

fǫ(p) (3.6)

The function fǫ(p) includes all the products of the Γ–functions:

fǫ(p) =
3

p

2

p+ 1

Γ
(

3p−1
12

)

Γ
(

3p+19
12

)

Γ
(

p+5
4

)

Γ
(

p+7
4

)

∼ 3
p

2

(

2.25

p2.2
+ 0.105

)

(3.7)

where the simplified fitting function is accurate at the per cent level.

3.1.2 Absorption coefficient

The absorption coefficient κν(θ) [cm−1] is defined as:

κν(θ) ≡ 1

8πmeν2

∫ γ2

γ1

N(γ)

γ2

d

dγ

[

γ2P (ν, θ)
]

dγ (3.8)

Written in this way, the above formula is valid even when the electron distri-
bution is truncated. For our power law electron distribution κν(θ) becomes:

κν(θ) ≡ 1

8πmeν2

∫ γ2

γ1

N(γ)

γ2

d

dγ

[

γ2P (ν, θ)
]

dγ (3.9)

Above ν = γ2
1νL, we have:

κν(θ) =
e2K

4mec2
(νL sin θ)

p+2
2 ν−

p+4
2 3

p+1
2 Γ

(

3p + 22

12

)

Γ

(

3p+ 2

12

)

(3.10)

Averaging over the pitch angles we have:

< (sin θ)
p+2
2 >=

∫ π

2

0
(sin θ)

p+2
2 sin θdθ =

√
π

2

Γ
(

p+6
4

)

Γ
(

p+8
4

) (3.11)
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resulting in a pitch angle average absorption coefficient:

κν =

√
πe2K

8mec
ν

p+2
2

L ν−
p+4
2 fκ(p) (3.12)

where the function fκ(p) is:

fκ(p) = 3
p+1
2

Γ
(

3p+22
12

)

Γ
(

3p+2
12

)

Γ
(

p+6
4

)

Γ
(

p+8
4

)

∼ 3
p+1
2

(

1.8

p0.7
+
p2

40

)

(3.13)

The simple fitting function is accurate at the per cent level.

3.1.3 Specific intensity

Simple radiative tranfer allows to calculate the specific intensity:

I(ν) =
ǫs(ν)

κν

(

1 − e−τν
)

(3.14)

where the absorption optical depth τν ≡ κνR andR is the size of the emitting
region. When τν ≫ 1, the esponential term vanishes, and the intensity is
simply the ratio between the emissivity and the absorption coefficient. This
is the self–absorbed, ot thick, regime. In this case, since both ǫs(ν) and
κν depends linearly upon K, the resulting self–absorbed intensity does not
depend on the normalization of the particle density K:

I(ν) =
2me√
3 ν

1/2
L

fI(p)
(

1 − e−τν
)

(3.15)

we can thus see that the slope of the self–absorbed intensity does not depend
on p. Its normalization, however, does (albeit weakly) depend on p through
the function fI(p), which in the case of averaging over an isotropic pitch
angle distribution is given by:

fI(p) =
1

p+ 1
=

Γ
(

3p−1
12

)

Γ
(

3p+19
12

)

Γ
(

p+5
4

)

Γ
(

p+8
4

)

Γ
(

3p+22
12

)

Γ
(

3p+2
12

)

Γ
(

p+7
4

)

Γ
(

p+6
4

)

∼ 5

4 p4/3
(3.16)

where again the simple fitting function is accurate at the level of 1 per cent.
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3.1.4 Self–absorption frequency

The self–absorption frequency νt is defined by τνt = 1:

νt = νL

[√
πe2RK

8mecνL
fκ(p)

]

4
p+4

= νL

[

π
√
π

4

eRK

B
fκ(p)

]
2

p+4

(3.17)

Note that the term in parenthesis is adimensional, and since RK has units
of the inverse of a surface, then e/B has the dimension of a surface. In
fact we have already discussed that this is the synchrotron absorption cross
section of a relativistic electron of energy γmec

2 absorbing photons at the
fundamental frequency νL/γ.

The random Lorentz factor γt of the electrons absorbing (and emitting)
photons with frequency νt is γt ∼ [3νt/(4νL)]1/2.

3.1.5 Synchrotron peak

In a F (ν) plot, the synchrotron spectrum peaks close to νt, at a frequency
νs,p given by solving

dI(ν)

dν
= 0 → d

dν

[

ν5/2
(

1 − e−τν
)

]

= 0 (3.18)

which is equivalent to solve the equation:

exp
(

τνs,p

)

− p+ 4

5
τνs,p

− 1 = 0 (3.19)

whose solution can be approximated by

τνs,p
∼ 2

5
p1/3 ln p (3.20)
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Compton scattering

4.1 Introduction

The simplest interaction between photons and free electrons is scattering.
When the energy of the incoming photons (as seen in the comoving frame
of the electron) is small with respect to the electron rest mass–energy, the
process is called Thomson scattering, which can be described in terms of
classical electro–dynamics. As the energy of the incoming photons increases
and becomes comparable or greater than mec

2, a quantum treatment is
necessary (Klein–Nishina regime).

4.2 The Thomson cross section

Assume an electron at rest, and an electromagnetic wave of frequency ν ≪
mec

2/h. Assume also that the incoming wave is completely linearly po-
larized. In order to neglect the magnetic force (e/c)(v ×B) we must also
require that the oscillation velocity v ≪ c. This in turn implies that the
incoming wave has a sufficiently low amplitude. The electron start to os-
cillate in response to the varying electric force eE, and the average square
acceleration during one cicle of duration T = 1/ν is

〈a2〉 =
1

T

∫ T

0

e2E2
0

m2
e

sin2(2πνt) dt =
e2E2

0

2m2
e

(4.1)

The emitted power per unit solid angle is given by the Larmor formula
dP/dΩ = e2a2 sin2 Θ/(4πc3) where Θ is the angle between the acceleration
vector and the propagation vector of the emitted radiation. Please note
that Θ is not the scattering angle, which is instead the angle between the
incoming and the scattered wave (or photon). We then have

dPe

dΩ
=

e4E2
0

8πm2
ec

3
sin2 Θ (4.2)
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The scattered radiation is completely linearly polarized in the plane defined
by the incident polarization vector and the scattering direction. The flux of
the incoming wave is Si = cE2

0/(8π). The differential cross section of the
process is then

(

dσ

dΩ

)

pol

=
dPe/dΩ

Si
= r20 sin2 Θ (4.3)

where r0 ≡ e2/(mec
2) is the classic electron radius, r0 = 2.82×10−13 cm. We

see that the scattered pattern of a completely polarized incoming wave is a
torus, with axis along the acceleration direction. The total cross section can
be derived in a similar way, but considering the Larmor formula integrated
over the solid angle [P = 2e2a2/(3c3)]. In this way the total cross section is

σpol =
Pe

Si
=

8π

3
r20 (4.4)

Note that the classical electron radius can also be derived by equating the
energy of the associated electric field to the electron rest mass–energy:

mec
2 =

∫ ∞

ao

E2

8π
4πr2dr =

∫ ∞

ao

e2

2r2
dr → a0 =

1

2

e2

mec2
(4.5)

Why is a0 slightly different from r0? Because there is an intrinsic uncertainty
related to the distribution of the charge within (or throughout the surface
of) the electron. See the discussion in Vol. 2, chapter 28.3 of “The Feynman
Lectures on Physics”, about the fascinating idea that the mass of the electron
is all electromagnetic.

4.2.1 Why the peanut shape?

The scattering of a completely unpolarized incoming wave can be derived
by assuming that the incoming radiation is the sum of two orthogonal com-
pletely linearly polarized waves, and then summing the associated scattering
patterns. Since we have the freedom to chose the orientations of the two
polarization planes, it is convenient to chose one of these planes as the one
defined by the incident and scattered directions, and the other one perpen-
dicular to this plane. The scattering can be then regarded as the sum of
two independent scattering processes, one with emission angle Θ, the other
with π/2. If we note that the scattering angle (i.e. the angle between the
scattered wave and the incident wave) is θ = π/2 − Θ, we have

(

dσ

dΩ

)

unpol

=
1

2

[

(

dσ(Θ)

dΩ

)

pol

+

(

dσ(π/2)

dΩ

)

pol

]

=
1

2
r20(1 + sin2 Θ)

=
1

2
r20(1 + cos2 θ) (4.6)
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Figure 4.1: Photons are coming along the y–axis. The top panels shows the
pattern of the scattered radiation for photons completely linearly polarized
along the z–axis (left) and along the x–axis (right). The sum of the two
torii corresponds to the pattern for unpolarized radiation (bottom panel).
This explains why we have a “peanut” shape, elongated along the velocity
vector of the incoming photons. Courtesy of Davide Lazzati.
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In this case we see that the cross section depends only on the scattering
angle θ. The pattern of the scattered radiation is then the superposition
of two orthogonal “tori” (one for each polarization direction), as illustrated
in Fig. 4.1. When scattering completely linearly polarized radiation, only
one “torus” survives. Instead, when scattering unpolarized radiation, some
polarization is introduced, because of the difference between the two “tori”
patterns. Both terms of the RHS of Eq. 4.6 refer to completely polarized
scattered waves (but in two perpendicular planes). The difference between
these two terms is then associated to the introduced polarization, which is
then

Π =
1 − cos2 θ

1 + cos2 θ
(4.7)

The above discussion help to understand why the scattering process intro-
duces some polarization, which is maximum (100%) if the angle between the
incoming and the scattered photons is 90◦ (only one torus contributes), and
zero for 0◦ and 180◦, where the two torii give the same contribution.

The total cross section, integrated over the solid angle, is the same as
that for polarized incident radiation (Eq. 4.4) since the electron at rest has
no preferred defined direction. This is the Thomson cross section:

σT =

∫
(

dσ

dΩ

)

unpol

dΩ =
2πr20

2

∫

(1 + cos2 θ)d cos θ =
8π

3
r20

= 6.65 × 10−25 cm2 (4.8)

4.3 Direct Compton scattering

In the previous section we considered the scattering process as an interaction
between an electron and an electromagnetic wave. This required hν ≪
mec

2. In the general case the quantum nature of the radiation must be
taken into account. We consider then the scattering process as a collision
between the electron and the photon, and apply the conservation of energy
and momentum to derive the energy of the scattered photon. It is convenient
to measure energies in units of mec

2 and momenta in units of mec.
Consider an electron at rest and an incoming photon of energy x0, which

becomes x1 after scattering. Let θ be the angle between the incoming and
outgoing photon directions. This defines the scattering plane. Momentum
conservation dictates that also the momentum vector of the electron, after
the scattering, lies in the same plane. Conservation of energy and conserva-
tion of momentum along the x and y axis gives:

x1 =
x0

1 + x0(1 − cos θ)
(4.9)

Note that, for x0 ≫ 1 and cos θ 6= 1, x1 → (1 − cos θ)−1. In this case the
scattered photon carries information about the scattering angle, rather than
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about the initial energy. As an example, for θ = π and x0 ≫ 1, the final
energy is x1 = 0.5 (corresponding to 255 keV) independently of the exact
value of the initial photon energy. Note that for x0 ≪ 1 the scattered energy
x1 ≃ x0, as assumed in the classical Thomson scattering. The energy shift
implied by Eq. 4.9 is due to the recoil of the electron originally at rest, and
becomes significant only when x0 becomes comparable with 1 (or more).
When the energy of the incoming photon is comparable to the electron rest
mass, another quantum effect appears, namely the energy dependence of the
cross section.

4.4 The Klein–Nishina cross section

The Thomson cross section is the classical limit of the more general Klein–
Nishina cross section (here we use x as the initial photon energy, instead of
x0, for simplicity):

dσKN

dΩ
=

3

16π
σT

(x1

x

)2
(

x

x1
+
x1

x
− sin2 θ

)

(4.10)

This is a compact form, but there appears dependent quantities, as sin θ is
related to x and x1. By inserting Eq. 4.9, we arrive to

dσKN

dΩ
=

3

16π

σT

[1 + x(1 − cos θ)]2

[

x(1 − cos θ) +
1

1 + x(1 − cos θ)
+ cos2 θ

]

(4.11)
In this form, only independent quantities appear (i.e. there is no x1). Note
that the cross section becomes smaller for increasing x and that it coincides
with dσT/dΩ for θ = 0 (for this angle x1 = x independently of x). This
however corresponds to a vanishingly small number of interactions, since
dΩ → 0 for θ → 0).

Integrating Eq. 4.11 over the solid angle, we obtain the total Klein–
Nishina cross section:

σKN =
3

4
σT

{

1 + x

x3

[

2x(1 + x)

1 + 2x
− ln(1 + 2x)

]

+
1

2x
ln(1 + 2x) − 1 + 3x

(1 + 2x)2

}

(4.12)

Asimptotic limits are:

σKN ≃ σT

(

1 − 2x+
26x2

5
+ ...

)

; x≪ 1

σKN ≃ 3

8

σT

x

[

ln(2x) +
1

2

]

; x≫ 1 (4.13)

The direct Compton process implies a transfer of energy from the photons to
the electrons. It can then be thought as an heating mechanism. In the next
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Figure 4.2: The total Klein–Nishina cross section as a function of energy.
The dashed line is the approximation at high energies as given in Eq. 4.13.

Figure 4.3: The differential Klein–Nishina cross section (in units of σT),
for different incoming photon energies. Note how the scattering becomes
preferentially forward as the energy of the photon increases.



4.4. THE KLEIN–NISHINA CROSS SECTION 49

Figure 4.4: Scattered photons energies as a function of the scattering angle,
for different incoming photon energies. Note that, for x ≫ 1 and for large
scattering angle, the scattered photon energies becomes x1 ∼ 1/2, indepen-
dent of the initial photon energy x.

subsection we discuss the opposite process, called inverse Compton scatter-

ing, in which hot electrons can transfer energy to low frequency photons.
We have so far neglected the momentum exchange between radiation

and the electron. One can see, even classically, that there must be a net
force acting along the direction of the wave if one considers the action of
the magnetic field of the wave. In fact the Lorentz force ev × B is always

directed along the direction of the wave (here v is the velocity along the E

field). This explains the fact that light can exert a pressure, even classically.

4.4.1 Another limit

We have mentioned that, in order for the magnetic Lorentz force to be neg-
ligible, the electron must have a transverse (perpendicular to the incoming
wave direction) velocity ≪ c. Considering a wave of frequency ω and electric
field E = E0 sin(ωt), this implies that:

v⊥
c

=

∫ T/2

0

eE0

cme
sin(ωt)dt =

2eE0

mecω
≪ 1 (4.14)

This means that the scattering process can be described by the Thomson
cross section if the wave have a sufficiently low amplitude and a not too
small frequency (i.e. for very small frequencies the electric field of the wave
accelerates the electron for a long time, and then to large velocities).
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4.4.2 Pause

Now pause, and ask if there are some ways to apply what we have done up
to now to real astrophysical objects.

• The Eddington luminosity is derived with the Thomson cross section,
with the thought that it describes the smallest probability of inter-
action between matter and radiation. But the Klein–Nishina cross
section can be even smaller, as long as the source of radiation emits
at high energy. What are the consequences? If you have forgotten the
definition of the Eddington luminosity, here it is:

LEdd =
4πGMmp

σT
= 1.5 × 1038 M

M⊙
erg s−1 (4.15)

• In Nova Muscae, some years ago a (transient) annihilation line was
detected, together with another feature (line–like) at 200 keV. What
can this feature be?

• It seems that high energy radiation can suffer less scattering and there-
fore can propagate more freely through the universe. Is that true? Can
you think to other processes that can kill high energy photons in space?

• Suppose to have an astrophysical source of radiation very powerful
above say – 100 MeV. Assume that at some distance there is a very
efficient “reflector” (i.e. free electrons) and that you can see the scat-
tered radiation. Can you guess the spectrum you receive? Does it
contain some sort of “pile–up” or not? Will this depend upon the
scattering angle?

4.5 Inverse Compton scattering

When the electron is not at rest, but has an energy greater that the typical
photon energy, there can be a transfer of energy from the electron to the
photon. This process is called inverse Compton to distinguish it from the
direct Compton scattering, in which the electron is at rest, and it is the
photon to give part of its energy to the electron.

We have two regimes, that are called the Thomson and the Klein–Nishina

regimes. The difference between them is the following: we go in the frame
where the electron is at rest, and in that frame we calculate the energy of the
incoming photon. If the latter is smaller than mec

2 we are in the Thomson
regime. In this case the recoil of the electron, even if it always exists, is
small, and can be neglected. In the opposite case (photon energies larger
than mec

2), we are in the Klein–Nishina one, and we cannot neglect the
recoil. As we shall see, in both regimes the typical photon gain energy, even
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if there will always be some arrangements of angles for which the scattered
photon looses part of its energy.

4.5.1 Thomson regime

Perhaps, a better name should be “inverse Thomson” scattering, as will
appear clear shortly.

4.5.2 Typical frequencies

In the frame K ′ comoving with the electron, the incoming photon energy is

x′ = xγ(1 − β cosψ) (4.16)

where ψ is the angle between the electron velocity and the photon direction
(see Fig 4.5). Then if x′ ≪ 1, we are in the Thomson regime. In the rest
frame of the electron the scattered photon will have the same energy x′1 as
before the scattering, independent of the scattering angle. Then

x′1 = x′ (4.17)

This photon will be scattered at an angle ψ′
1 with respect to the electron

Figure 4.5: In the lab frame an electron is moving with velocity v. Its
velocity makes an angle ψ with an incoming photon of frequency ν. In the
frame where the electron is at rest, the photon is coming from the front,
with frequency ν ′, making an angle ψ′ with the direction of the velocity.
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velocity. Going back to K the observer sees

x1 = x′1γ(1 + β cosψ′
1) (4.18)

Recalling Eq. 1.15, for the transformation of angles:

cosψ′
1 =

β + cosψ1

1 + β cosψ1
(4.19)

we arrive to the final formula:

x1 = x
1 − β cosψ

1 − β cosψ1
(4.20)

Now all quantities are calculated in the lab–frame.

Figure 4.6: Minimum and maximum scattered frequencies. The maximum
occurs for head-on collisions, the minimum for tail–on ones. These two
frequencies are one the inverse of the other.

Let us see the minimum and maximum energies. The maximum is when
ψ = π (head on collision), and when ψ1 = 0 (the photon is scattered along
the electron velocity vector). In these are head–on collisions:

x1 = x
1 + β

1 − β
= γ2(1 + β)2x → 4γ2x; head − on (4.21)

where the last step is valid if γ ≫ 1. The other extreme is for ψ1 = π and
ψ = 0. In this case the incoming photon “comes from behind” and bounces
back. In these “tail–on” collisions:

x1 = x
1 − β

1 + β
=

x

γ2(1 + β)2
→ x

4γ2
; tail − on (4.22)
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where again the last step is valid if γ ≫ 1. Another typical angle is sinψ1 =
1/γ, corresponding to cosψ1 = β. This corresponds to the aperture angle
of the beaming cone. For this angle:

x1 =
1 − β cosψ

1 − β2
x = γ2(1 − β cosψ)x; beaming cone (4.23)

which becomes x1 = x/(1 + β) for ψ = 0, x1 = γ2x for ψ = π/2 and
x1 = γ2(1 + β)x for ψ = π.

For an isotropic distribution of incident photons and for γ ≫ 1 the
average photon energy after scattering is (see Eq. 4.45):

〈x1〉 =
4

3
γ2x (4.24)

Total loss rate

We can simply calculate the rate of scatterings per electron considering all
quantities in the lab–frame. Let n(ǫ) be the density of photons of energy
ǫ = hν, v the electron velocity and ψ the angle between the electron velocity
and the incoming photon. For mono–directional photon distributions, we
have:

dN

dt
=

∫

σTvreln(ǫ)dǫ (4.25)

vrel = c−v cosψ is the relative velocity between the electron and the incom-
ing photons. We then have

dN

dt
=

∫

σTc(1 − β cosψ)n(ǫ)dǫ (4.26)

Note that the rate of scatterings in the lab frame, when the electron and/or
photon are anisotropically distributed, can be described by an effective cross
section σeff ≡

∫

σT(1 − β cosψ)dΩ/4π. For photons and electrons moving
in the same direction the scattering rate (hence, the effective optical depth)
can be greatly reduced.

The power contained in the scattered radiation is then

dEγ

dt
=

ǫ1dN

dt
= σTc

∫

(1 − β cosψ)2

1 − β cosψ1
ǫn(ǫ)dǫ (4.27)

Independently of the incoming photon angular distribution, the average
value of 1 − β cosψ1 can be calculated recalling that, in the rest frame of
the electron, the scattering has a backward–forward symmetry, and there-
fore 〈cosψ′

1〉 = π/2. The average value of cosψ1 is then β, leading to
〈1 − β cosψ1〉 = 1/γ2. We therefore obtain

dEγ

dt
= σTcγ

2

∫

(1 − β cosψ)2ǫn(ǫ)dǫ (4.28)
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If the incoming photons are isotropically distributed, we can average out
(1−β cosψ)2 over the solid angle, obtaining 1 +β2/3. The power produced
is then

dEγ

dt
= σTcγ

2

(

1 +
β2

3

)

Ur (4.29)

where

Ur =

∫

ǫn(ǫ)dǫ (4.30)

is the energy density of the radiation before scattering. This is the power
contained in the scattered radiation. To calculate the energy loss rate of the
electron, we have to subtract the initial power of the radiation eventually
scattered

Pc(γ) ≡ dEe

dt
=

dEγ

dt
− σTcUr =

4

3
σTcγ

2β2Ur (4.31)

A simple way to remember Eq. 4.31 is:

Pc(γ) =

(

# of collisions

sec

)

(average phot. energy after scatt.)

=

(

σTc
Ur

〈hν〉

) (

4

3
〈hν〉γ2

)

(4.32)

Note the similarity with the synchrotron energy loss. The two energy loss
rates are identical, once the radiation energy density is replaced by the
magnetic energy density UB. Therefore, if relativistic electrons are in a
region with some radiation and magnetic energy densities, they will emit by
both the synchrotron and the Inverse Compton scattering processes. The
ratio of the two luminosities will be

Lsyn

LIC
=

Psyn

Pc
=

UB

Ur
(4.33)

where we have set dEIC/dt = dEe/dt. This is true unless one of the two
processes is inhibited for some reason. For instance:

• At (relatively) low energies, electrons could emit and absorb synchrotron
radiation, so the synchrotron cooling is compensated by the heating
due to the absorption process.

• At high energies, electrons could scatter in the Klein–Nishina regime:
in this case, since the cross section is smaller, they will do less scat-
terings, and cool less.

But let us go back to Eq. 4.28, that is the starting point when dealing
with anisotropic seed photon distributions. Think for instance to an accre-
tion disk as the producer of the seed photons for scattering, and some cloud
of relativistic electrons above the disk. If the cloud is not that distant, and
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Figure 4.7: In the center of a semi–sphere (the “bowl”) we have relativistic
electrons going down and going up, all with the same γ. Since the seed
photon distribution is anisotropic, so is the scattered radiation and power.
The losses of the electron going down are 7 times larger than those of the
electron going up (if γ ≫ 1). Since almost all the radiation is produced
along the velocity vector of the electrons, also the downward radiation is 7
times more powerful than the upward radiation.

it is small with respect to the disk size, then this case is completely equal to
the case of having a little cloud of relativistic electrons located at the center
of a semi–sphere. That is, we have the “bowl” case illustrated in Fig 4.7.
Just for fun, let us calculate the total power emitted by an electron going
“up” and by its brother (i.e. it has the same γ) going down. Using Eq. 4.28
we have:

Pdown

Pup
=

∫ 0
−1(1 − βµ)2dµ

∫ −1
0 (1 − βµ)2dµ

=
1 + β + β2/3

1 − β + β2/3
→ 7 (4.34)

where µ ≡ cosψ and the last step assumes β → 1. Since almost all the
radiation is produced along the velocity vector of the electrons, also the
downward radiation is more powerful than the upward radiation (i.e. 7
times more powerful for γ ≫ 1). What happens if the cloud of electrons
is located at some height above the bowl? Will the Pdown/Pup be more or
less?
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4.5.3 Cooling time and compactness

The cooling time due to the inverse Compton process is

tIC =
E

dEe/dt
=

3γmec
2

4σTcγ2β2Ur
∼ 3mec

2

4σTcγUr
; γǫ≪ mec

2 (4.35)

This equation offers the opportunity to introduce an important quantity,
namely the compactness of an astrophysical source, that is essentially the
luminosity L over the size R ratio. Consider in fact how Ur and L are related:

Ur =
L

4πR2c
(4.36)

Although this relation is almost universally used, there are subtleties. It
is surely valid if we measured Ur outside the source, at a distance R from
its center. In this case 4πR2c is simply the volume of the shell crossed by
the source radiation in one second. But if we are inside an homogeneous,
spherical transparent source, a better way to calculate Ur is to think to
the average time needed to the typical photon to exit the source. This is
tesc = 3R/(4c). It is less than R/c because the typical photon is not born
at the center (there is more volume close to the surface). If V = (4π/3)R3

is the volume, we can write:

Ur =
L

V
tesc =

3L

4πR3

3R

4c
=

9L

16πR2c
(4.37)

This is greater than Eq. 4.36 by a factor 9/4. Anyway, let us be conventional
and insert Eq. 4.36 in Eq. 4.35:

tIC =
3πmec

2R2

σTγL
→ tIC

R/c
=

3π

γ

mec
3R

σTL
≡ 3π

γ

1

ℓ
(4.38)

where the dimensionless compactness ℓ is defined as

ℓ =
σTL

mec3R
(4.39)

For ℓ close or larger than unity, we have that even low energy electrons cool
by the Inverse Compton process in less than a light crossing time R/c.

There is another reason why ℓ is important, related to the fact that
it directly measures the optical depth (hence the probability to occur) of
the photon–photon collisions that lead to the creation of electron–positron
pairs. The compactness is one of the most important physical parameters
when studying compact high energy compact sources (X–ray binaries, AGNs
and Gamma Ray Bursts).
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4.5.4 Single particle spectrum

As we did for the synchrotron spectrum, we will not repeat the exact deriva-
tion of the single particle spectrum, but we try to explain why the typical
frequency of the scattered photon is a factor γ2 larger than the frequency of
the incoming photon. Here are the steps to consider:

1. Assume that the relativistic electron travels in a region where there
is a radiation energy density Ur made by photons which we will take,
for simplicity, monochromatic, therefore all having a dimensionless
frequency x = hν/mec

2.

2. In the frame where the electron is at rest, half of the photon appear
to come from the front, within an angle 1/γ.

3. The typical frequency of these photon is x′ ∼ γx (it is twice that for
photons coming exactly head on).

4. Assuming that we are in the Thomson regime means that i) x′ < 1; ii)
the cross section is the Thomson one; iii) the frequency of the scattered
photon is the same of the incoming one, i.e. x′1 = x′ ∼ γx, and iv)
the pattern of the scattered photons follows the angular dependence
of the cross section, therefore the “peanut”.

5. Independently of the initial photon direction, and therefore indepen-
dently of the frequencies seen by the electrons, all photons after scat-
terings are isotropized. This means that all observer (at any angle ψ′

1

in this frame see the same spectrum, and the same typical frequency.
Half of the photons are in the semi-sphere with ψ′

1 ≤ π/2.

6. Now we go back to the lab–frame. Those photons that had ψ′
1 ≤ π/2

now have ψ1 ≤ 1/γ. Their typical frequency if another factor γ greater
than what they had in the rest frame, therefore

x1 ∼ γ2x (4.40)

This is the typical Inverse Compton frequency.

The exact derivation can be found e.g. in Rybicki & Lightman (1979)
and in Blumenthal & Gould (1970). We report here the final result, valid
for a monochromatic and isotropic seed photons distribution, characterized
by a specific intensity

I(x)

x
=

I0
x
δ(x− x0) (4.41)

Note that I(x)/x is the analog of the normal intensity, but it is associated
with the number of photons. If we have n electrons per cubic centimeter we
have:

ǫIC(x1) =
σTnI0(1 + β)

4γ2β2x0
FIC(x1) (4.42)
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The function FIC contains all the frequency dependence:

Figure 4.8: Spectrum emitted by the Inverse Compton process by electrons
of different γ (as labeled) scattering an isotropic monochromatic radiation
field of dimensionless frequency x0. The dashed line corresponds to the spec-
trum emitted within the 1/γ beming cone: it always contains the 75% of the
total power, for any γ. For x1 < x0 we have downscattering, i.e. the photons
loose energy in the process. Note also the power law segments arising when
γ ≫ 1: FIC(x1) ∝ x2

1 for the downscattering tail, and FIC(x1) ∝ x1 for the
upscattering segment.

FIC(x1) =
x1

x0

[

x1

x0
− 1

(1 + β)2γ2

]

;
1

(1 + β)2γ2
<
x1

x0
< 1

FIC(x1) =
x1

x0

[

1 − x1

x0

1

(1 + β)2γ2

]

; 1 <
x1

x0
< (1 + β)2γ2 (4.43)

The first line correspond to downscattering: the scattered photon has less

energy than the incoming one. Note that in this case FIC(x1) ∝ x2
1. The

second line corresponds to upscattering: in this case FIC(x1) ∝ x1 except
for frequencies close to the maximum ones. The function FIC(x1) is shown
in Fig. 4.8 for different values of γ. The figure shows also the spectrum of
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the photons contained in the beaming cone 1/γ: the corresponding power is
always 75% of the total.

The average frequency of FIC(x1) is

〈x1〉 = 2γ2x0; energy spectrum (4.44)

This is the average frequency of the energy spectrum. We sometimes want
to know the average energy of the photons, i.e. we have to calculate the
average frequency of the photon spectrum FIC(x1)/x1. This is:

〈x1〉 =
4

3
γ2x0; photon spectrum (4.45)

4.6 Emission from many electrons

We have seen that the emission spectrum from a single particle is peaked,
and the typical frequency is boosted by a factor γ2. This is equal to the
synchrotron case. Therefore we can derive the Inverse Compton emissiv-
ity as we did for the synchrotron one. Again, assume a power–law energy
distribution for the relativistic electrons:

N(γ) = Kγ−p = N(E)
dE

dγ
; γmin < γ < γmax (4.46)

and assume that it describes an isotropic distribution of electrons. For
simplicity, let us assume that the seed photons are isotropic and monochro-
matic, with frequency ν0 (we now pass to real frequencies, since we are
getting closer to the real world..). Since there is a strong link between the
scattered frequency νc and the electron energy that produced it, we can set:

νc =
4

3
γ2ν0 → γ =

(

3νc

4ν0

)1/2

→
∣

∣

∣

∣

dγ

dν

∣

∣

∣

∣

=
ν
−1/2
c

2

(

3

4νo

)1/2

(4.47)

Now, repeating the argument we used for synchrotron emission, we can state
that the power lost by the electron of energy γmec

2 within mec
2dγ goes into

the radiation of frequency ν within dν. Since we will derive an emissivity
(i.e. erg cm−3 s−1 sterad−1 Hz−1) we must remember the 4π term (if the
emission is isotropic). We can set:

ǫc(νc)dνc =
1

4π
mec

2Pc(γ)N(γ)dγ (4.48)

This leads to:

ǫc(νc) =
1

4π

(4/3)α

2
σTcK

Ur

ν0

(

νc

ν0

)−α

(4.49)

Again, a power law, as in the case of synchrotron emission by a power law
energy distribution. Again the same link between α and p:

α =
p− 1

2
(4.50)
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Of course, this is not a coincidence: it is because both the Inverse Compton
and the synchrotron single electron spectra are peaked at a typical frequency
that is a factor γ2 greater than the starting one.

Eq. 4.49 becomes a little more clear if

• we express ǫc(νc) as a function of the photon energy hνc. Therefore
ǫc(hνc) = ǫc(νc)/h;

• we multiply and divide by the source radius R;

• we consider a proxy for the scattering optical depth of the relativistic
electrons setting τc ≡ σTKR.

Then we obtain:

ǫc(hνc) =
1

4π

(4/3)α

2

τc
R/c

Ur

hν0

(

νc

ν0

)−α

(4.51)

In this way: τc (for τc < 1) is the fraction of the seed photons Ur/hν0

undergoing scattering in a time R/c, and νc/ν0 ∼ γ2 is the average gain in
energy of the scattered photons.

4.6.1 Non monochromatic seed photons

It is time to consider the more realistic case in which the seed photons are
not monochromatic, but are distributed in frequency. This means that we
have to integrate Eq. 4.49 over the incoming photon frequencies. For clarity,
let us drop the subscript 0 in ν0. We have

ǫc(νc) =
1

4π

(4/3)α

2

τc
R/c

ν−α
c

∫ νmax

νmin

Ur(ν)

ν
ναdν (4.52)

where Ur(ν) [erg cm−3 Hz−1] is the specific radiation energy density at
the frequency ν. The only difficulty of this integral is to find the correct
limit of the integration, that, in general, depend on νc. Note also another
interesting thing. We have just derived that if the same electron population
produces Inverse Compton and synchrotron emission, than the slopes of the
two spectra are the same. Therefore, when Ur(ν) is made by synchrotron
photons, then Ur(ν) ∝ ν−α. The result of the integral, in this case, will be
ln(νmax/νmin).

Fig. 4.9 helps to understand what are the right νmax and νmin to use.
On the y–axis we have the frequencies of the seed photon distribution, which
extend between ν1 and ν2. On the x–axis we have the scattered frequencies,
which extend between νc,1 = (4/3)γ2

minν1 and νc,4 = (4/3)γ2
maxν1. The

diagonal lines are the functions

ν =
3νc

4γ2
min

ν =
3νc

4γ2
max

(4.53)
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Figure 4.9: The ν–νc plane. The two diagonal lines delimit the regions of
the seed photons that can be used to give a given frequency νc.

that tell us what are the appropriate ν that can give νc once we change γ.
There are three zones:

1. In zone (1), between νc,1 and νc,2 = (4/3)γ2
minν2 the appropriate limits

of integration are:

νmin = ν1 νmax =
3νc

4γ2
min

(4.54)

2. In zone (2), between νc,2 and νc,3 = (4/3)γ2
maxν1 the limits are:

νmin = ν1 νmax = ν2 (4.55)

3. In zone (3), between νc,3 and νc,4 = (4/3)γ2
maxν2 the limits are:

νmin =
3νc

4γ2
max

νmax = ν2 (4.56)

We see that only in zone (2) the limits of integration coincide with the exten-
sion in frequency of the seed photon distribution, and are therefore constant.
Therefore ǫc(νc) will be a power law of slope α only in the corresponding
frequency limits. Note also that for a narrow range [ν1; ν2] or a narrow range
in [γmin; γmax] we do not have a power law, since there is no νc for which the
limits of integrations are both constant.
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4.7 Thermal Comptonization

With this term we mean the process of multiple scattering of a photon due
to a thermal or quasi–thermal distribution of electrons. By quasi–thermal

we mean a particle distribution that is peaked, even if it is not a perfect
Maxwellian. Since the resulting spectrum, by definition, is due to the su-
perposition of many spectra, each corresponding to a single scattering, the
details of the particle distribution will be lost in the final spectrum, as long
as the distribution is peaked. The “bible” for an extensive discussion about
this process is Pozdnyakov, Sobol & Sunyaev (1983).

There is one fundamental parameter measuring the importance of the
Inverse Compton process in general, and of multiple scatterings in partic-
ular: the Comptonization parameter, usually denoted with the letter y. Its
definition is:

y = [average # of scatt.] × [average fractional energy gain for scatt.]
(4.57)

If y > 1 the Comptonization process is important, because the Comptonized
spectrum has more energy than the spectrum of the seed photons.

4.7.1 Average number of scatterings

This can be calculated thinking that the photon, before leaving the source,
experience a sort of random walk inside the source. Let us call

τT = σTnR (4.58)

the Thomson scattering optical depth, where n is the electron density and
R the size of the source. When τT < 1 most of the photons leave the source
directly, without any scattering. When τT > 1 then the mean free path is
d = R/τT and the photon will experience, on average, τ2

T scatterings before
leaving the source. Therefore the total path travel by the photon, from the
time of its birth to the time it leaves the source is: the photon is born, is

c∆t = τ2
T

R

τT
= τTR (4.59)

and ∆t is the corresponding elapsed time.

4.7.2 Average gain per scattering

Relativistic case

If the scattering electrons are relativistic, we have already seen that the
photon energy is amplified by the factor (4/3)γ2 (on average). Therefore
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the problem is to find what is 〈γ2〉 in the case of a relativistic Maxwellian,
that has the form

N(γ) ∝ γ2e−γ/Θ; Θ ≡ kT

mec2
(4.60)

Setting x0 = hν0/(mec
2) we have that the average energy of the photon of

initial frequency x0 after a single scattering with electron belonging to this
Maxwellian is:

〈x1〉 =
4

3
〈γ2〉 =

4

3
x0

∫ ∞
1 γ2γ2e−γ/Θdγ
∫ ∞
1 γ2e−γ/Θdγ

=
4

3
x0Θ

2 Γ(5)

Γ(3)

=
4

3
x0

4!

2!
= 16Θ2x0 (4.61)

Non relativistic case

In this case the average gain is proportional to the electron energy, not
to its square. The derivation is not immediate, but we must use a trick.
Also, we have to account that in any Maxwellian, but especially when the
temperature is not large, there will be electrons that have less energy than
the incoming photons. In this case it is the photon to give energy to the
electron: correspondingly, the scattered photon will have less energy than
the incoming one. Averaging out over a Maxwellian distribution, we will
have:

∆x

x
=

x1 − x0

x0
= αΘ − x (4.62)

Where αΘ is what the photon gains and the −x term corresponds to the
downscattering of the photon (i.e. direct Compton). We do not know yet
the value for the constant α. To determine it we use the following argument.
We know (from general and robust arguments) what happens when photons
and electrons are in equilibrium under the only process of scattering, and
neglecting absorption (i.e. when the number of photon is conserved). What
happens is that the photons follow the so–called Wien distribution given by:

FW(x) ∝ x3e−x/Θ → NW(x) =
FW(x)

x
∝ x2e−x/Θ (4.63)

where F correspond to the radiation spectrum, N to the photon spectrum,
and Θ is the dimensionless electron temperature. When a Wien distribution
is established we must have 〈∆x〉 = 0, since we are at equilibrium, So we
require that, on average, gains equal losses:

〈∆x〉 = 0 → αΘ〈x〉 − 〈x2〉 = 0 (4.64)
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Calculating 〈x〉 and 〈x2〉 for a photon Wien distribution, we have:

〈x〉 =

∫ ∞
0 x3e−x/Θdx

∫ ∞
0 x2e−x/Θdx

=
Γ(4)

Γ(3)
Θ =

3!

2!
Θ = 3Θ

〈x2〉 =

∫ ∞
0 x4e−x/Θdx

∫ ∞
0 x3e−x/Θdx

=
Γ(5)

Γ(4)
Θ2 =

4!

3!
Θ2 = 12Θ2 (4.65)

This implies that α = 4 not only at equilibrium, but always, and we finally
have

∆x

x
= 4Θ − x (4.66)

Combining the relativistic and the non relativistic cases, we have an expres-
sion valid for all temperatures:

∆x

x
= 16Θ2 + 4Θ − x (4.67)

going back to the y parameter we can write:

y = max(τT, τ
2
T) × [16Θ2 + 4Θ − x] (4.68)

Going to the differential form, and neglecting downscattering, we have

dx

x
= [16Θ2 + 4Θ] dK → xf = x0 e

(16Θ2+4Θ)K → xf = x0 e
y (4.69)

where now K is the number of scatterings. If we subtract the initial photon
energy, and consider that the above equation is valid for all the x0 of the
initial seed photon distribution, of luminosity L0, we have

Lf

L0
= ey − 1 (4.70)

Then the importance of y is self evident, and also the fact that it marks the
importance of the Comptonization process when it is larger than 1.

4.7.3 Comptonization spectra: basics

We will illustrate why even a thermal (Maxwellian) distribution of electrons
can produce a power law spectrum. The basic reason is that the total pro-
duced spectrum is the superposition of many orders of Compton scattering
spectra: when they are not too much separated in frequency (i.e. for not too
large temperatures) the sum is a smooth power law. We can distinguish 4
regimes, according to the values of τT and y. As usual, we set x ≡ hν/(mec

2)
and Θ ≡ kT/(mec

2).
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# scatt. Fraction of escaping 〈x〉
photons

0 e−τT → 1 − τT x0

1 ∼ τT x0A
2 ∼ τ2

T x0A
2

3 ∼ τ3
T x0A

3

4 ∼ τ4
T x0A

4

....... ...... .......
n ∼ τn

T x0A
n

Table 4.1: When τT < 1, a fraction e−τT of the seed photons escape without
doing any scattering, and a fraction 1 − e−τT → τ undergoes at least one
scattering. We can then repeat these fractions for all scattering orders. Even
if a tiny fraction of photons does several scatterings, they can carry a lot of
energy.

The case τT < 1

Neglect downscattering for simplicity. The fractional energy gain is ∆x/x =
16Θ2+4Θ, so the amplification A of the photon frequency at each scattering
is

A ≡ x1

x
= 16Θ2 + 4Θ + 1 ∼ y

τT
(4.71)

We can then construct the following table

A look to Fig. 4.10 should convince you that the sum of all the scattering
orders gives a power law, and should also make clear how to find the spectral
slope. Remember that we are in a log–log plot, so the spectral index is
simply ∆y/∆x. We can find it considering two successive scattering orders:
the typical (logarithm of) frequency is enhanced by logA, and the fraction
of photons doing the scattering is − log τT. Remember also that we use
F (x) ∝ x−α as the definition of energy spectral index.

Therefore

α = − log τT
logA

∼ − log τT
log y − log τT

(4.72)

When y ∼ 1, its logarithm is close to zero, and we have α ∼ 1. When
y > 1, then α > 1 (i.e. flat, or hard), and vice–versa, when y < 1, then its
logarithm will be negative, as the logarithm of τT, and α > 1 (i.e. steep, or

soft). Therefore

α = − log τT
logA

∼ − log τT
log y − log τT

(4.73)

When y ∼ 1, its logarithm is close to zero, and we have α ∼ 1. When
y > 1, then α > 1 (i.e. flat, or hard), and vice–versa, when y < 1, then its
logarithm will be negative, as the logarithm of τT, and α > 1 (i.e. steep, or

soft).
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Figure 4.10: Multiple Compton scatterings when τT < 1. A fraction τT of
the photons of the previous scattering order undergoes another scattering,
and amplifying the frequency by the gain factor A, until the typical photon
frequency equals the electron temperature Θ. Then further scatterings leave
the photon frequency unchanged.

Attention! when τT ≪ 1 and A is large (i.e. big frequency jumps be-
tween one scattering and the next), then the superposition of all scattering
orders (by the way, there are fewer, in this case) will not guarantee a perfect
power–law. In the total spectrum we can see the “bumps” corresponding to
individual scattering orders.

The case τT∼>1

This is the most difficult case, as we should solve a famous equation, the
equation of Kompaneet. The result is still a power law, whose spectral index
is approximately given by

α = −3

2
+

√

9

4
+

4

y
(4.74)
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The case τT ≫ 1: saturation

In this case the interaction between photons and matters is so intense that
they go to equilibrium, and they will have the same temperature. But
instead of a black–body, the resulting photon spectrum has a Wien shape.
This is because the photons are conserved (and therefore, if other scattering
processes such as induced Compton or two–photon scattering are important,
then one recovers a black–body, because these processes do not conserve
photons). The Wien spectrum has the slope:

I(x) ∝ x3 e−x/Θ (4.75)

At low frequencies this is harder than a black–body.

The case τT > 1, y > 1: quasi–saturation

Suppose that in a source characterized by a large τT the source of soft
photons is spread throughout the source. In this case the photons produced
close to the surface, in a skin of optical depth τT = 1, leave the source
without doing any scattering (note that having the source of seed photons
concentrated at the center is a different case). The remaining fraction,
1 − 1/τT, i.e. almost all photons, remains inside. This can be said for each
scattering order. This is illustrated in Fig. 4.11, where τT corresponds to
the ratio between the flux of photon inside the source at a given frequency
and the flux of photons that escape. If I start with 100 photons, only 1 –
say – escape, and the other 99 remain inside, and do the first scattering.
After it, only one escape, and the other 98 remain inside, and so on, until
the typical photon and electron energies are equal, and the photon therefore
stays around with the same final frequency until it is its turn to escape.
This “accumulation” of photons at x ∼ 3Θ gives the Wien bump. Note that
since at any scattering order only a fixed number of photons escape, always
the same, then the spectrum in this region will always have α = 0. This is
a “saturated” index, i.e. one obtains always zero even when changing τT or
Θ. What indeed changes, by increasing τT, is that i) the flux characterized
by x0 decreases, ii) the Wien peak will start to dominate earlier (at lower
frequencies), while nothing happens to the flux of the Wien peak (it stays
there). Increasing still τT we fall in the previous case (equilibrium, meaning
only the Wien spectrum without the x0 part).
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Figure 4.11: Multiple Compton scatterings when τT > 1 and y ≫ 1. For the
first scattering orders, nearly all photons are scattered: only a fraction 1/τT
can escape. Therefore the number of photons escaping at each scattering
order is the same. This is the reason of the flat part, where F (x) ∝ x0.
When the photon frequency is of the order of Θ, photons and electrons are
in equilibrium, and even if only a small fraction of photon can escape at each
scattering order, they do not change frequency any longer, and therefore they
form the Wien bump, with the slope F (x) ∝ x3e−x/Θ. If we increase τT, the
flux with slope x0 decreases, while the Wien bump stays the same.

References

Blumenthal G.R. & Gould R.J., 1970, Reviews of Modern Physics 42,
237

Rybicki G.B & Lightman A.P., 1979, Radiative processes in Astrophysics

(Wiley & Sons)
Pozdnyakov L.A., Sobol I.M. & Sunyaev R.A., 1983, Astrophysics Space

Phys. Rev. Vol. 2 p. 189–331



Chapter 5

Synchrotron Self–Compton

Consider a population of relativistic electrons in a magnetized region. They
will produce synchrotron radiation, and therefore they will fill the region
with photons. These synchrotron photons will have some probability to
interact again with the electrons, by the Inverse Compton process. Since the
electron “work twice” (first making synchrotron radiation, then scattering
it at higher energies) this particular kind of process is called synchrotron
self–Compton, or SSC for short.

5.1 SSC emissivity

The importance of the scattering will of course be high if the densities of
electrons and photons are large. If the electron distribution is a power
law [N(γ) = Kγ−p], then we expect that the SSC flux will be ∝ K2, i.e.
quadratic in the electron density.

We should remember Eq. 4.52, and, instead of a generic Ur(ν), we should
substitute the appropriate expression for the specific synchrotron radiation
energy density. We will then set:

Us(ν) =
3R

4c

Ls(ν)

V
= 4π

3R

4c
ǫs(ν) (5.1)

where 3R/(4c) is the average photon source–crossing time, and V is the
volume of the source. Now a simple trick: we write the specific synchrotron
emissivity as

ǫs(ν) = ǫs,0 ν
−α (5.2)

Remember: the α appearing here is the same index in Eq. 4.52. Substituting
the above equations into Eq. 4.52 we have

ǫssc(νc) =
(4/3)α−1

2
τc ǫs,0ν

−α
c

∫ νmax

νmin

dν

ν
(5.3)
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As you can see, ν−α
c is nothing else than the specific synchrotron emissivity

calculated at the (Compton) frequency νc. Furthermore, the integral gives
a logarithmic term, that we will call ln Λ. We finally have:

ǫssc(νc) =
(4/3)α−1

2
τc ǫs(νc) ln Λ (5.4)

In this form the ratio between the synchrotron and the SSC flux is clear, it
is [(4/3)α−1/2]τc ln Λ ∼ τc ln Λ. It is also clear that since τc ≡ σTRK and
ǫs(νc) ∝ KB1+α, then, as we have guessed, the SSC emissivity ǫssc(νc) ∝ K2

(i.e. electrons work twice). Fig. 5.1 summarizes the main results.

Figure 5.1: Typical example of SSC spectrum, shown in the νFν vs ν rep-
resentation. The spectral indices instead correspond to the Fν ∝ ν−α con-
vention.
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5.2 Diagnostic

If we are confident that a the spectrum of a particular source is indeed given
by the SSC process, then we can use our theory to estimate a number of
physical parameters. We have already stated (see Eq. 2.32) that observa-
tions of the synchrotron spectrum in its self–absorbed part can yield the
value of the magnetic field if we also know the angular radius of the source
(if it is resolved). Observation in the thin part can then give us the product
RK ≡ τc/σT (see Eq. 2.28). But τc is exactly what we need to predict the
high energy flux produced by the SSC process. Note that if the source is re-
solved (i.e. we know θs) we can get these information even without knowing
the distance of the source. To summarize:

F syn
thick(ν) ∝ θ2

s

ν5/2

B1/2
→ get B

F syn
thin(ν) ∝ θ2

sRKB
1+αν−α → get τc = RK/σT (5.5)

There is an even simpler case, which for reasons outlined below, is the most
common case employed when studying radio–loud AGNs. In fact, if you
imagine to observe the source at the self absorption frequency νt, then you
are both observing the thick and the thin flux at the same time. Then, let
us call the flux at νt simply Ft. We can then re-write the equation above:

B ∝ θ4
sν

5
t

F 2
t

τc ∝ Ftν
α
t

θ2
sB

1+α

Fssc(νc) ∝ τcFsyn(νc) ∝ τ2
cB

1+αν−α
c

∝ F
2(2+α)
t ν

−(5+3α)
t θ−2(3+2α)

s ν−α
c (5.6)

Once again: on the basis of a few observations of only the synchrotron flux,
we can calculate what should be the SSC flux at the frequency νc. Note the
rather strong dependencies, particularly for θs, in the sense that the more
compact the source is, the larger the SSC flux.

If it happens that we do observe the source at high frequencies, where
we expect that the SSC flux dominates, then we can check if our model
works. Does it? For the strongest radio–loud sources, almost never. The
disagreement between the predicted and the observed flux is really severe,
we are talking of several orders of magnitude. Then either we are completely
wrong about the model, or we miss some fundamental ingredient. We go for
the second option, since, after all, we do not find any mistake in our theory.

The missing ingredient is relativistic bulk motion. If the source is mov-
ing towards us at relativistic velocities, we observe an enhanced flux and
blueshifted frequencies. Not accounting for it, our estimates of the magnetic
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field and particles densities are wrong, in the sense that the B field is smaller
than the real one, and the particle densities are much greater (for smaller B
we need more particle to produce the same synchrotron flux). So we repeat
the entire procedure, but this time assuming that F (ν) = δ3+αF ′(ν), where
δ = 1/[Γ(1−β cos θ)] is the Doppler factor and F ′(ν) is the flux received by
a comoving observer at the same frequency ν. Then

F syn
thick(ν) ∝ θ2

s

ν5/2

B1/2
δ1/2

F syn
thin(ν) ∝ θ2

sRKB
1+αν−αδ3+α (5.7)

The predicted SSC flux then becomes

Fssc(νc) ∝ F
2(2+α)
t ν

−(5+3α)
t θ−2(3+2α)

s ν−α
c δ−2(2+α) (5.8)

If we now compare the predicted with the observe SSC flux, we can estimate
δ. And indeed this is one of the most powerful δ–estimators, even if it is not
the only one.

5.3 Why it works

We have insisted on the importance of observing the synchrotron flux both
in the self–absorbed and in the thin regime, to get B and τc. But the
self–absorbed part of the synchrotron spectrum, the one ∝ ν5/2 is very
rarely observed in general, and never in radio–loud AGNs. So, where is the
trick? It is the following. In radio–loud AGN the synchrotron emission, at
radio frequencies, comes partly from the radio lobes (extended structures,
hundreds of kpc in size, very relaxed, unbeamed, and usually self–absorbing
at very small frequencies) and from the jet. The emission from the latter is
beamed, and it is the superposition of the fluxes produced in several regions:
the most compact ones (closer to the central engine) self–absorb at high radio
frequencies (say, at 100 GHz), and the bigger they are, the smaller their self–
absorbed frequency. But what is extraordinary about these jets is that the
peak flux of each component (i.e. the flux at the self–absorption frequency)
is approximately constant (in the past, this phenomenon was called cosmic

conspiracy). Therefore, when we sum up all the components, we have a flat
radio spectrum, as illustrated by Fig. 5.2.

Of course the emission components of the jet, to behave in such a coher-
ent way, must have an electron density and a magnetic field that decrease
with the distance from the central engine in an appropriate way. There is
a family of solutions, but the most appealing is certainly B(R) ∝ R−1 and
K(R) ∝ R−2. It is appealing because it corresponds to conservation of the
total number of particles, conservation of the bulk power carried by them
(if Γ does not change) and conservation of the Poynting flux (i.e. the power
carried by the magnetic field).
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Figure 5.2: Typical example of the composite spectrum of a flat spectrum
quasars (FSRQ) shown in the Fν vs ν representation, to better see the flat
spectrum in the radio. The reason of the flat spectrum is that different parts
of the jet contributes at different frequencies, but in a coherent way. The blue
line is the SSC spectrum. Suppose to observe, with the VLBI, at 22 GHz:
in this framework we will always observe the jet component peaking at this
frequency. So you automatically observe at the self–absorption frequency of
that component (for which you measure the angular size).

To our aims, the fact that the jet has many radio emission sites self–
absorbing at different frequency is of great help. In fact suppose to observe
a jet with the VLBI, at one frequency, say 22 GHz. There is a great chance to
observe the emission zone which is contributing the most to that frequency,
i.e. the one which is self–absorbing at 22 GHz. At the same time you
measure the size. Then, suppose to know the X–ray flux of the source. It will
be the X–ray flux not only of that component you see with the VLBI, but an
integrated flux from all the inner jet (with X–ray instruments the maximum
angular resolution is about 1 arcsec, as in optical). But nevertheless you
know that your radio blob cannot exceed the measured, total, X–ray flux.
Therefore you can put a limit on δ (including constants):

δ > (0.08α + 0.14) (1 + z)

(

Ft

Jy

)(

Fx

Jy

)− 1
2(2+α) ( νx

1 keV

)− α

2(2+α)

×
( νt

5 GHz

)− 5+3α

2(2+α)

(

2θs

m.a.s.

)− 3+2α

2+α
[

ln

(

νs,max

νt

)]
1

2(2+α)

(5.9)

For some sources you would find δ > 10 or 20, i.e. rather large values.


