XMM scan of the Galactic center

Gabriele Ponti (MPE Garching)

Morris, Terrier, Haberl, Sturm, Clavel, Soldi, Goldwurm, Predehl, Belanger, Warwick, Tatischeff

What is your background?

What is your name?

Current scientific project?

What you would like to do after this project? Why?

When I was sitting in your position, I was expecting from the speaker...

To get a comprehensive overview of the Galactic center science

... with a theoretical framework of all the science

→ To know the solution to tasks that I will be facing

(e.g., "Settimana enigmistica" → get the correct answer)

→ University preparation

Research is adding new knowledge

→ Nobody has the correct answer (yet)

→ You will learn and become the expert!

→ Present a few experiments

→ Explain this image!

ESA News/XMM-Newton/G. Ponti et al. 2015a

Healthy questions:

Why should I do this work/project?

What are the prospects?

What could be my contribution?

The old XMM-Newton view of the GC

XMM-Newton key project

The XMM-Newton view of the GC

More than 100 EPIC observations

Exposure > 1.5 Ms (central 15') > 200 ks in the plane

XMM-Newton the instrument

The XMM-Newton view of the GC

Thousands of X-ray point sources! (Chandra detected >9000)

Scattering of X-ray radiation by dust

Dust scattering halo evolution after a GRB

Dust scattering produces a ring of scattered and delayed light Number of rings → number of layers The rings increase with time Ring size → fractional distance Truemper +73; Predehl +95; Valencic +15; Heinz +16; Jin +17

Scattering of X-ray radiation by dust

Scattering of X-ray radiation by dust

Energy dependence of the halo

Dust scattering halo is energy dependent

Jin. GP +17

Larger cross section at lower energies -> Steeper spectrum

Dust scattering halo distorts the source spectrum if not taken into account

Spectral corrections

Scattering of X-ray radiation by dust

The eclipsing binary: AX J1745.6-2901

During eclipses these systems are completely obscured

The eclipsing binary: AX J1745.6-2901

Variability of dust halo

Residual emission → delayed halo

Predicted variations

The XMM-Newton view of the GC

Thousands of X-ray point sources! (Chandra detected >9000)

Spectra → powerful infomation

Ponti +15

X-ray absorption from neutral material

Typical GC $N_H \sim 6 \times 10^{22} \text{ cm}^{-2}$

Foreground emission

Galactic longitude

Distribution of hot plasma

Ponti +13; +14

Hot plasma pervading the GC \rightarrow Galactic ridge emission +72; Worral +82

Second largest diffuse X-ray structure (>100°) L_{2-10keV}=2×10³⁸ erg s⁻¹

Galactic ridge emission

Galactic ridge due to point sources

Ponti +13; +14

Hot plasma produced by faint X-ray sources in the Galactic Ridge Revnivtsev +09

Excess emission (maybe) in the central region?

Koyama +11; Uchiyama +11

Supernova remnants

Supernova remnants

Stars with M > 8 M_{Sun} end their lives with an explosive ejection

Total kinetic energy $E_{kin} \sim 10^{51} \text{ erg}$

The interstellar medium (ISM) has typically low density (1 cm⁻³) → Strong shock!

→ Expands; Heats ISM; creates a hot bubble; pushes away cold material

Different phases of supernova remnants

Ambient Interstellar Medium

Free expansion phase

t ~ 2-3×10² yr No deceleration (R ∝ t) velocity ejecta (v) ~ 10⁴ km s⁻¹ Mass swept-up (M) < M_{Sun}

Adiabatic or Taylor-Sedov

t ~ 2×10⁴ yr M ~ M_{ejecta} Kinetic energy to heat ISM (E conserved) → No ionisation equilibrium

> n_e: electron density n_H: hydrogen density E₀: initial energy t_{dyn}: dynamical age t_i: ionisation age EM = n_en_HV R: remnant radius (cm) V: volume (cm³) kT_s: shock temperature (keV) tau: ionisation timescale (s cm⁻³) m_p: proton mass (g) r_m: baryon per hydrogen

X-ray provide: EM, kTs, R, tau -> Determine explosion energetics & ISM parameters

Different phases of supernova remnants

Stellar winds & superbubbles

All main sequence stars earlier than B2 and late type B stars

→ high speed winds with high M_{out}

Typically: $v_{out} = 2 \times 10^3 \text{ km s}^{-1}$ \Rightarrow after t ~ 10⁶ yr $\Rightarrow E_{kin} > 10^{50} \text{ erg s}^{-1}$ \Rightarrow large impact on ISM

Castor +75; Weaver +77; Mac Low +88

Evolution similar to SNR Reach R ~ 30-60 pc Hot bubble surrounded by cold material

- → Escape Galactic potential
- → enrich Galactic halo

Distribution of warm plasma

Patchy distribution with small and large structures Total luminosity of soft plasma: $L_X \sim 3.4 \times 10^{36}$ erg s⁻¹ Bound to the Galaxy Origin?

New SNR, excavating bubbles in MCZ?

Galactic longitude

 $E_{th} \sim 10^{49-50} \text{ erg}$ Probably SNR

Holes in MC distribution

Expanding molecular shell?

G0.570-0.001 confirmed!! Tanaka +09

The lobes of the Sgr A complex

Ponti +15

Sgr A's lobes

Bipolar thermal (kT~1keV) features (5×10pc)

→ Signatures of outflow (collimated by the circumnuclear disc) from Sgr A*'s region

Morris +03; Baganoff +03; Markoff +10; Heard +12; Ponti +12

$E_{th} \sim 9 \times 10^{49} \text{ erg}$

- → Winds from central star cluster
 - → Winds from Sgr A*'s accretion flow Wang +13

Sharp edges

→ Explosive event

SGR J1745-2900? SNR of PWN G359.945-0.044?

Galactic longitude

Summary

Dust scattering halos Highly absorbed (N_H~10²³ cm⁻²) Soft X-ray foreground star Hot plasma → point sources SNR interacting with clouds Sgr A lobes → outflow from central parsec

A super-bubble powered by the Quintuplet cluster?

Series of SNR producing an apparently coherent structure

Mori +09; Heard +13

Filled (S xv) elliptical structure 3d shell morphology E_{th} ~ 1.5×10⁵¹ erg (another super-bubble?) Mori +09; Heard +13 Remnant of a tidal disruption event? (1 every 10⁴ yr) Guillochon +15

Si xiji, S xv. Ar xvij	Name	Other name	Coordinates (1, b)	Size arcsec	References	
	STAR CLUSTERS: Central star cluster Quintuplet		359.9442, -0.046 0.1604, -0.0591	$0.33 \\ 0.5$	45,116,117,118 1,63,11	
	Arches	G0.12+0.02	0.1217, 0.0188	0.7	1,2,3,4,5,6,7,8,9,39,40,11	
	Sh2-10	DB00-6	0.3072,-0.2000	1.92	10,11,12,63,11	
	Sh2-17	DB00-58	0.0013, 0.1588	1.65	13,63,11	
	DB00-05	G0.33-0.18	0.31 -0.19	0.4	22,63,11	
	SNR - BUBBLES - SUPER-BUBBLES:					
	G359.0-0.9	G358.5-0.9 - G359.1-0.9	359.03,-0.96	26 imes 20	X-R 48,51,75,76,81,119,120	
	G359.07-0.02	G359.0-0.0	359.07,-0.02	22 imes 10	R 14,48,51,66	
		G359.12-0.05	359.12,-0.05	24 imes16	X 66	
	G359.10-0.5		359.10,-0.51	22 imes 22	X-R 37,48,51,56,74,75,81,120,121	
	G359.41-0.12		359.41,-0.12	3.5 imes5.0	X 14	
	Chimney		359.46,+0.04	6.8 imes2.3	X 14	
	G359.73-0.35‡		359.73,-0.35	4	X 58	
	G359.77-0.09	Superbubble	359.84,-0.14	20 imes 16	X 15,16,17,58	
		G359.79-026b	359.79,-0.26	8×5.2	X 15,16,17,58	
		G0.0-0.16††	0.00,-0.16		X This work	
	G359.87+0.44	Cane G359.85+0.39	359.87,+0.44	11×5	R 48	
	20pc Sgr A*'s lobes		359.94, -0.04	5.88	R 32,33,34,17	
	G359.92-0.09‡	Parachute - G359.93-0.07	359.93,-0.09	1	R 35,38,43,47,58,60,61	
· · · · · · · · · · · · · · · · · · ·	Sgr A East	G0.0+0.0	359.963, -0.053	3.2 imes2.5	X-R 5,18,19,20,48,75,81	
	G0.1-0.1	Arc Bubble	0.109,-0.108	13.6×11	X This work	
		G0.13,-0.12b	0.13,-0.12	3×3	X 17	
	G0.224-0.032		0.224,-0.032	2.3 imes 4.6	X This work	
	G0.30+0.04	G0.3+0.0	0.34,+0.045	14 imes 8.8	R 21,48,51,81,82	
		G0.34+0.05				
		G0.33+0.04				
	G0.40-0.02	Suzaku J1746.4-2835.4 G0.42-0.04	0.40,-0.02	4.7×7.4	X 22	
	G0.52-0.046		0.519,-0.046	2.4 imes 5.1	This work	
	G0.57-0.001		0.57,-0.001	1.5 imes 2.9	This work	
	G0.57-0.018†	CXO J174702.6-282733	0.570,-0.018	0.2	X 23,24,58,59,68,80	
	G0.61+0.01†	Suzaku J1747.0-2824.5	0.61,+0.01	2.2 imes 4.8	X 22,65,79	
	G0.9+01♡	SNR 0.9+0.1	0.867,+0.073	7.6 imes7.2	R 25,26,27,28,29,48,75,81,82	
	DS1	G1.2-0.0	1.17,+0.00	3.4 imes 6.9	X 31	
	Sgr D SNR	G1.02-0.18	1.02,-0.17	10 imes 8.0	R 30,31,48,51,75,77,81,82	
		G1.05-0.15				
		G1.05-0.1				
	G14-01	G1.0-0.1	1.4 -0.10	10×10	P 73 81 82	
	01.4-0.1		1.4,-0.10	10 × 10	K /3,01,02	

Atlas of all (~15) SNR and SB candidate in the region Assume SN emission is visible during $h_{CMZ}/c_s \sim 10-40$ kyr 3.5×10^{-4} yr⁻¹ < SN rate < 15×10^{-4} yr⁻¹ Assuming Kroupa IMF: SFR ~ 0.035-0.15 M_{Sun} yr⁻¹ Massive kinetic energy input > 1.1×10^{40} erg s⁻¹

→ Powering outflows to GCL?

AS OF DIFFUSE X-RAY EMITTING FEATURES

Law +11; Crocker +11; 12; Yoast-Hull +14; Jouvin +15

High latitude soft plasma

22

0.23

0.32

0.26

0.44

0.67

1.1

2.1

3.9

7.6

High latitude soft plasma

High latitude soft plasma

GC mini-starburst environment → Outflows Crocker +12

The future: eROSITA!

Radio arcs and filaments

La Rosa +00

Poloidal field but toroidal in clouds

Novak +03; Nishiyama +09

Radio arcs and filaments

La Rosa +00

Dust scattering halos

Dust scattering halos Highly absorbed (N_H~10²³ cm⁻²) Soft X-ray foreground star

0.5-2 keV Green: 2-4.5 keV Blue: 4.5-12 keV Non-thermal filaments \rightarrow reconnection? Atlas of GC SNR → Energy output > 1.1×10⁴⁰ erg s⁻¹ → SFR Discovery of high latitude warm plasma Warm → GC atmosphere? 140 pc

Dust scattering halos Highly absorbed (N_H~10²³ cm⁻²) Soft X-ray foreground star Hot plasma → point sources SNR interacting with clouds Sgr A lobes → outflow from central parsec Superbubble filling the arc bubble → Quintuplet cluster? Superbubble close to Sgr A* → TDE?