Approaching Sgr A*: G2 and similar events

Gabriele Ponti

Max Planck Institute for Extraterrestrial Physics (Garching) George, Scaringi, Zhang, Jin, Dexter, Terrier, Clavel, Degenaar, Eisenhauer, Genzel, Gillessen, Goldwurm, Habibi, Haggard, Hailey, Harrison, Merloni, Mori, Morris, Nandra, Pfuhl, Plewa, Ott, Waisberg

Sgr A*'s quiescent emission

Sgr A*'s quiescent emission

Sgr A*'s quiescent emission

What is G2?

Gillessen +12; 13a,b; Phifer +13; Phuhl +14; Witzel +14

Cloud of 3 MEarth falling on Sgr A*

Unique probe of the hot accretion flow → shocks with the hot gas → induce X-ray emission and (maybe) minor accretion event (10×L_{quies})

> Gillessen +12; 13a,b; Shartmann +12; Burkert +12; Ballone +12; Fragile +12

What is G2?

Gillessen +12; 13a,b; Phifer +13; Phuhl +14; Witzel +14

Cloud of 3 M_{Earth} falling on Sgr A*

Unique probe of the hot accretion flow → shocks with the hot gas → induce X-ray emission and (maybe) minor accretion event (10×L_{quies})

> Gillessen +12; 13a,b; Shartmann +12; Burkert +12; Ballone +12; Fragile +12

Predictions

Fragile +12

But cloud mass and internal structure are not well known

G2: IR observations of a dusty star

Increased flaring of Sgr A*: clustering or G2?

X-ray flares of Sgr A*

Baganoff +01; Goldwurm +03; Porquet +03; 08; Belanger +05; Nowak +12; Neilsen +13; Barriere +14; Ponti +15b

Sgr A*'s emission during flares?

Best target to study low luminosity accretion

Are X-rays inverse-Compton radiation?

Hot flow (ADAF/RIAF?) $r \sim 10 R_s$ Thermal e⁻ ($\gamma_e \sim 10$) $B \sim 20-50 G$ $kT_e \sim 10^{10} K$ $n_e \sim 10^6 cm^{-3}$ $M \sim 10^{-7}-10^{-9} M_{Sun} yr^{-1}$

Heating/accelerating particles - IC

e⁻ with $kT_e \sim 10^2 m_e c^2$ B~10² G \rightarrow L_{NIR} synchro Quie e⁻ + L_{NIR} \rightarrow IC \rightarrow L_X

Eckart +04; 06; +08; +09; +12; Yusef-Zadeh +06; +08; +09; Hornstein +07; Marrone +08; Trap +11; Barriere +14

Jet?

BH

Quie e⁻

Are X-rays Synchrotron self Compton?

Are X-rays Synchrotron?

Hot flow (ADAF/RIAF?) $r \sim 10 R_s$ Thermal e⁻ ($\gamma_e \sim 10$) $B \sim 20-50 G$ $kT_e \sim 10^{10} K$ $n_e \sim 10^6 cm^{-3}$ $M \sim 10^{-7}-10^{-9} M_{Sun} yr^{-1}$

Heating/accelerating particles

 e^{-} with $\gamma_{e} > 10^{6}$

B~10 G → synchro from NIR to X

Eckart +04; 06; +08; +09; +12; Yusef-Zadeh +06; +08; +09; Hornstein +07; Marrone +08; Trap +11; Barriere +14

Jet?

BH

What is the origin of Sgr A*'s X-ray emission?

X-ray slope during bright flares

Absorption towards nearby transients

SGR J1745-2900 (magnetar) Swift J1745.7-290015 → same N_H of Sgr A* XMM-DDT: Ponti +16b

Rotation measure → absorption in spiral arms Bower +14; Roy +13

> Dust scattering halo of AX J1745.6-2901 → two components

The foreground component → same N_H of Sgr A* Jin +17a,b; Ponti +17b

→ The NH towards Sgr A* is due to ISM Ponti +17b

XMM+NuSTAR spectrum of a very bright flare

First NIR and X-ray spectrum of a flare!

First NIR and X-ray spectrum of a flare!

Evolution of y_e during flares?

Evolution of B during flares!

Slow acceleration of e⁻? → X-ray light-curves

X-ray flares shorter in hard X-rays

Same evolution from NIR to X-rays

Conclusions:

→ First simultaneous NIR and X-ray spectra of a bright flare of Sgr A*
Γ_{IR} = 1.7±0.1; Γ_X = 2.27±0.12 → ΔΓ = 0.57±0.09
→ Synchrotron with cooling break!

Flare SED evolution and X-ray light curves → Slow evolution of y_e → Slow (stochastic?) acceleration

→ Most of the N_H of Sgr A* has a 10⁶ **ISM** origin SINFONI vL(v) (10³⁰ erg s⁻¹) XMM+NuSTAR **10**⁵ **Mean Spectrum** → Powerful flares from Sgr A* confirm the synchrotron origin of the **10**⁴ X-ray emission 10³ **10**¹⁵ **10**¹⁷ **10**¹⁴ **10**¹⁶ 10¹⁸ 10¹⁹

Ponti +17b

Frequency (Hz)