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[ ecture 2

* Some basic neutron star concepts

e Born in supernovae = cool down within 10 milion years

* Small mass (1.4-2 M), small radius (10-12 km), and
strong magnetic field (10713 G)

e How does the neutron star affects the accretion?
— Studying accretion physics (1.€., magnetic accretion)

— Very complex = only some very basic concepts

e How does accretion affects neutron stars?
— Studying neutron star physics

— Dense matter physics = not possible on Earth
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How to constrain NS matter?
* Determining M and R
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Use X-ray binaries

* Can be very bright in X-rays

* Neutron stars have strong magnetic fields
— HMXBs: B~ 10113 G
—~ LMXBs: B~ 10" G
=» Magnetic accretion =» M/R determination

» Heating and cooling of neutron stars due to
the accretion of matter

— Study physical processes 1n the core and crust



Boundary Layer

Non-magnetic
accretion
* Boundary layer

— Unknown geometry

Boundary layer

/I

Disk

* One can prove
— See Frank, King and Raine (FKR)
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Magnetic accretion

Most 1f not nearly all neutron stars will have a
relevant magnetic fields
— Although the range is large: 107-10'° Gauss

Very complex to determine how exactly
magnetic accretion occurs

— Also relevant for other type of objects
 White dwarfs, YSOs

Neutron star information

Basic concepts in magnetic accretion



Magnetic accretion

 If accretor has a significant magnetic field,
there will be no boundary layer

* Disk 1s terminated at the magnetospheric
boundary

» Disk-field interaction 1s very complex



Some quantities

Magnetic moment 1 = R’ B so that B ~ w/r?
Magnetic pressure (cgs units):
B2 ‘uz

miE Qr 8

e

Very steep dependence on 7!

Matter pressure (which 1s the ram + the gas pressure)
= v’ + pc’ ~ pv’° for highly supersonic flows



Magnetospheric radius

* Magnetospheric radius is the radius at which the
magnetic pressure equals the matter pressure

— Thus the radius below which the magnetic field dominates the
accretion flow ( also called the Alfvén radius)

— Since gas pressure << ram pressure, magnetic pressure = ram

pressure 2

) U 2GMm
Pmag(rM):pu . 3877’}3 = 47z'r5/2 =
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FKR

Note for B= 10"?Gand R = 10° cm, p;, = 1



Disk accretion

« At which radius R;,will the disk be disrupted by the
field?
— Very difficult problem to solve
— Depends on

* Configuration of B field
— Is it dipole or not? How much distorted by the disk?

 Inclination between B axis and rotation axis
* Typically R,,~ 0.57,,, but other estimates suggest
RM ~ ZI/'M
 Inside r = R, the matter follows the field lines



How large 1s R,,?

 For typical neutron star R, ~ 10 cm >> Ryg~ 10° cm
— Thus R, nearly always outside the star unless B < 1079 G

 In most case, accretion will be controlled by the field
when coming close to the neutron star
— Also, typically Ry, << R_;,. ~ 10°"'° cm

 Disk formation is not affected by the magnetic field in
Roche-lobe overflow systems

— In some white dwarf systems no disk is formed

e For wind-accreting systems this 1s not so simple

— We will focus on disk accreting systems
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Accretion flow geometry

« Accretion can only occur at the polar caps, thus within S
— All matter will be channeled to polar caps at » = R, at point A

— Typically only a fraction of the surface receives matter



Observational etfects

e Pulsations!

— Often 1n X-rays, but also 1 optical
4 magnetic field dominates
—lmS<PSpin<10 S

disc flow

Magnetic Magnetic
Field Pole

Emits X-rays

Originof QPO?

Hot spot Neutron Star



From Romanov et al.

http://www.astro.cornell.edu/~romanova/
http://www.astro.cornell.edu/us-russia/

http://www.astro.cornell.edu/us-russia/animation/a_spots.htm

http://www.astro.cornell.edu/us-russia/animation/a_inclined.htm

O = angle between magnetic field
ax1s and rotation axis

Hotspot
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Pulse profile modelling
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Also relevant to YSOs

Optically
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Heating and cooling of accreting
neutron stars

Neutron stars are old & very cold when accretion starts

A lot of energy 1s dumped on the neutron star
— Release of gravitational energy (200 MeV/nucleon)

— Thermonuclear reactions (1-5 MeV/nucleon)
— Reactions in the deep crust (100’°s of meters)

o Electron caption, neutron emission, pycnonuclear reactions
o [-2 MeV/nucleon

Will that heat up the neutron star?
Can we observe that?

— Yes! Cooling neutron stars in X-ray transients
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Igniting a thermonuclear burst

* Accreting H and He

For Mdot > 1% Eddington,
H burns stably on the surface

— Layer of He produced

« After hours to days, pressure
has build up sufficiently to
allow unstable He burning -
thermonuclear X-ray burst

— Type-I X-ray burst

* A lot of nuclear physics

involved

After slides by Nathalie Degenaar,
Jean in ‘t Zand, Andrew Cumming
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RXTE PUFFED ACCRETION DiISK
VERSION 2 WiTH NO WOBBLE
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SKYWORKS DIGITAL ANIMATION
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http://www.nasa.gov/centers/goddard/mpeg/97911main_Puff.0539.mpeg
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Reheating of accreting neutron stars

Figure provided by
Ed Brown

Envelope: accreted H, He

Colpi et al. 2001

Outer crust:nuclei, e
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L~ 1.58
| R~
Heating mostly due to pycnonuclear 2
. 1.56 &
reactions: about 1-2 MeV/nucleon =
1.54
When accretion stops we can see the
cooling emission from the surface Lo8




P p reactions €~ capture X, Bplp q
(dynecm™)  (gem™) % (keV)
0.235x 10% 3517 x 10%  195pq 106 Ry L 2e~ 4+ 29, 0 4.4 5.7
3.603 x 107 5.621 x 10% %Ry —196 Mo — 2e~ + 24, 0 4.6 5.7
2372x 10% 2413 x 1010 95Mo —106/Zr — 2e~ 4+ 2, 0 4.9 5.6
8.581 x 10%*  6.639 x 100 1067y 106 §r _ 2e~ 4+ 2y, 0 5.1 5.6
2283 x 10%°  1.455 x 10! 1068r 106 Ky _ De= 4+ 2y, 0 5.4 55
5.025x 10 2774 x 10! 196Ky 1068 — 26 4 2y, 0 5.7 5.5
9.713x 10* 4.811 x 10! 1068 106 Gp.— 287+ 2y, 0 6.1 5.5
1.703 x 10 7785 x 10'"  %Ge - Ni£14n\-4e- + 4y, 0.13 132 77.6
1.748 x 10°°  8.989 x 10"  2Ni —% Fe 2v, 0.19 69 392
1.924 x 10°°  1.032 x 102 86Fe —% Cr 2v, 0.25 73  43.1
2.135x 10" 1.197 x 10"*  ®Cr —»™ Tif+ 6n2e~ +: ¢ . |
2394 x 10" 1.403 x 10"*  "*Ti —% Ca+ 6n2e” +|2 neutron €misson
2720 x 10"  1.668 x 10'2  %Ca —52 A - 4 2v, 0.42 8.5 57.7
3.145x 10 2016 x 10"*  “*Ar —»°° S 4 6n2e™ +L2v. 0.47 9.0 637
3.723 x 10"  2.488 x 10" -‘"s —»f" Si + vc 0.53 9.4 705
4549 x 10*  3.153 x 102 Me—Pga2g 0.61 88  79.0
4.624 x 10°°  3.472 x 102 -Mg - Ne +6n2e + 2vL

e +3¢ Ne -2 C 0.66 106 251.8
5.584 x 10"  4.399 x 102 "2Ca —>66 Ar + 6n2e + 2v, 0. 48 253
6.883 x 10" 5.355 x 10"*  “®Ar »% S 4+ 6n2e” + 2v, 0.72 7 273
8.749 x 10  6.655x 10"*  “S 5™ Siafnde” 4 2v. 0.75  4.6\\29:2
1.157 x 10°"  8.487 x 102 Si —% Mg + 8n2e~ + 2v;

Mg +% Mg —% Cr N 139.6
1234 x 10> 9242 x 102  %Cr > T1+6n2e + 2,
1.528 x 10°"  1.096 x 10" ®Ti »* Ca + 6n2e™ + 2, 0.82
1.933x10°"  1.317x10°  ®Ca —™ Ar+ 6n2e™ + 2v, 0.83 1.8
2510x 107" 1.609 x 107 TAr % 2, 0.85
3.363 x 10°  2.003 x 10'3 /78S 2 Sj + 6n2e~ + 2V,

828 452 §j -2 Ni 1.7 703

3 T 2 e

4588 x 10" 2520 x 10"  '*Ni »'* Fe + 4n2e™ + 2v. 0.87 0.8 2.6
5994 x10%  3.044 x 10  '*Fe —'" Cr + 2n2e™ + 2, 088 09 24
8.408 x 10°  3.844 x 103 '8Cr —!'6 Tj 4 2n2e~ + 2v, 0.88 0.8 2.2

Crustal
reactions

Reaction rate depends on
density

Exact rates and at which
density they occur 1s not

fully known

- ™ Pycnonuclear reactions

Haensel & Zdunik 2003
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Heating of the crust
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Observed neutron star temperature (eV)
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Temperature (eV)

150

100

S0

Probing the crust using cooling curves

... ——..
S ...

P-ce—-—-.

Models depend on core and crust properties
- Composition and structure

- Superfluidity of the neutrons

Exotic matter in core?
Amorphous or crystalline crust
Properties of the “pasta” layer
(Crustal magnetic field)
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Conclusions

* Neutron star strongly affects the accretion flow
— Magnetic accretion = highly complex

» Potential to probe ultra-dense matter with
accreting neutron stars

— Pulse profile modelling

* Need many photons = future generation of X-ray
satellites

— Cooling of accretion heated neutron stars

« Has lead to new insights in neutron star cores and crusts
but many uncertainties remain



