The high-redshift Universe and the role of galaxies and AGN to cosmic reionization

Lecture 1

- A panchromatic view of high-redshift AGN
- Physical properties of the nucleus and of the host

Roberto Gilli INAF – Osservatorio Astronomico di Bologna

The high-redshift Universe and the role of galaxies and AGN to cosmic reionization

Some fundamental questions:

- At what epoch did the first generation of SMBHs form?
- What is their origin (e.g. light vs heavy seeds)?
- Where and how early "seeds" could grow to SMBHs?
- How was the Universe reionized?

High-redshift AGN: how high??

AGN space density declines at z>3: early times in BH evolution

Miyaji et al. 2015

The first QSO discovered at z > 5.7

About 80 QSOs known at z>5.7

Banados et al. 2014

The most distant QSO known: ULAS J1120 at z=7.085

spectrum very similar to lower-z QSOs

The brigthest QSO (most massive SMBH) known at z>6: SDSS J0100+2802 at z=6.3

Known QSOs at z^{6} are powered by SMBHs with M>10⁸ M_{sun} (even >10¹⁰ M_{sun}) and rapidly accrete at their Eddington limit

Persistent theoretical challenge:

- •How did they grow to such big masses so rapidly (< 1 Gyr) ?
- Were they capable to sustain uninterrupted Eddington limited accretion?

see M. Volonteri lectures

Examples of X-ray spectra

normalized counts/sec/keV 10-3 15 10 20 10⁻⁴ NH 10^4 counts sec⁻¹ kev⁻¹ 10-5 10⁻⁵ 20 N 15 \times ້⊲ 10 0 N 10-6 0.5 2 5 10 1.0 1.5 2.0 2.5 3.0 channel energy (keV) photon index Farrah et al. 2004 10 Energy [keV]

About 25% of z~6 QSOs have been observed in the X-rays

ULASJ1120 (z=7.085)

SDSSJ1030+0524 (z=6.28)

Moretti et al. 2014

 $F_F \simeq E^{-\alpha}$ with $\alpha \simeq 1.0 - 1.1$; or $N_F \simeq E^{-\Gamma}$ with $\Gamma \simeq 2.0 - 2.1$ ($F_F = E \times N_F = E^{1-\Gamma} \rightarrow photon index \Gamma = \alpha+1$)

Physical properties of the hosts

Metallicity of high-z QSOs is similar to that of low-z QSOs
→ the nuclear regions are metal rich

 \rightarrow major episode of chemical enrichment in their hosts at t_u<1 Gyr

Juarez et al. 2009

Broad band SED of ULASJ1120

Barnett et al. 2015

Gas and dust in the host ISM

ALMA observations of ULAS J1319+0950, z=6.13

$$SFR(M_{\odot} yr^{-1}) = 243.6 \times L_{FIR}(10^{12} L_{\odot})$$

$$M_{d}(10^{8} M_{\odot}) = 0.56 \times L_{FIR}(10^{12} L_{\odot})$$

$$M_{H_{2}}(M_{\odot}) = 1.6 \times 10^{4} \times L_{CO(1-0)}(L_{\odot})$$

$$M_{HI}(M_{\odot}) = 0.96 \times L_{[CII]}(L_{\odot})$$

[CII] → atomic gas (HI)
 CO → molecular gas H₂)
 (see e.g. Calura et al. 2014
 on the underlying assumptions)

J2000 Right Ascension J2000 Right Ascension

$$M_{dust} \sim 10^{8-9} M_{sun}$$

SFR ~ a few hundreds M_{sun}/yr
 $M_{gas} \sim 10^{9-10} M_{sun}$
 $(M_{H_2} \sim 5 \times M_{HI})$

Large dust quantities again point towards a chemically enriched ISM

Wang et al. 2013

How do we weigth the host galaxy? Gas dynamics $M_{dyn} \approx r_{gas} v_{gas}^2 / G$

Wang et al. 2013

(but statistics still limited)

The BH to stellar mass ratio

Host SFR, gas and dust mass are ok for standard IMF, SFE, and grain growth if M_{*}>10¹¹ M_{sun} (e.g. Valiante et al. 2011, 2014, Calura et al. 2014)

Tension between M_{dust} and M_{dyn}:
1) change IMF, SFE, grain growth?
2) M_{dyn} underestimated?

 $M_{\rm BH}/M_{*}~or~M_{\rm BH}/\sigma~$ higher than local

- selection effects?

- M_{dyn} underestimated?

Wang et al. 2010

Take home messages

Bright QSOs at z=6 appear mature systems in a young Universe

They are nearly identical to bright QSOs at lower-redshift

Very efficient BH growth, star assembly and chemical enrichment

Early SMBHs may have grown earlier than their hosts

Challenges for theory? See next lectures

Two interesting counter-examples?

Two z~6 QSOs without NIR bump: no hot-dust (T~1000 K): no torus? Young, just formed objects?

Jiang et al. 2010, Nature

Broad band SED of ULASJ1120

Barnett et al. 2015