The high-redshift Universe and the role of galaxies and AGN to cosmic reionization

Lecture 3

- Observational evidence of feedback at high redshift
- Early large scale structures: galaxy overdensities

Roberto Gilli INAF – Osservatorio Astronomico di Bologna

AGN-driven outflows

AGN-driven gas outflows extremely common → interplay/feedback with ISM and IGM

How strong is this feedback?

~1-30 kpc scales Does it heat/expel the ISM halting star formation? (hence preventing the assembly of too big galaxies). Does it alter the global structure of the host?

~30-1000 kpc scales Does it affect the environment around QSOs (e.g. by heating the IGM)?

Outflows in AGN (highly ionized gas)

Lanzuisi et al. 2012

Tombesi et al. 2015, Nature

Outflows in AGN (highly ionized gas)

Outflows in AGN (atomic and molecular gas)

Outflows from SDSSJ1148 at z=6.42

[CII] extended to 30 kpc

 $dM_{out}/dt > 1400 M_{sun}/yr$ v~1400 km/s $d > 1 Mpc in 10^9 yr$

DIOAU

Cicone et al. 2015

Maiolino et al. 2012

Outflows from SDSSJ1148 at z=6.42

→ QSO lifetime > 10^8 yr

[CII] extended to 30 kpc

dM_{out}/dt >1400 M_{sun}/yr v~1400 km/s d > 1 Mpc in 10⁹ yr

Cicone et al. 2015

UFOs in a high-z QSO

ultra-fast outflows in a z=3.91, lensed QSO

only this case known at z>3:

but difficult to observe: need photon statistics and lensing is effective but rare →UFOs likely abundant even in high-z sources

v_{out} up to ~0.7c from variability: r_{out}~10R_g

Chartas et al. 2009

Large-scale (0.1-1 Mpc) feedback

Large-scale (0.1-1 Mpc) feedback

stacked thermal SZ signal from >26000 QSOs in the SDSS at z=0.1-3.0

 5σ detection \rightarrow thermal energy injected by QSO winds (E_{tot})

$$egin{aligned} y(\mathbf{\hat{n}}) &= \int n_e \sigma_T rac{k_\mathrm{B} T_e}{m_e c^2} \, \mathrm{d}l \ Y(z) &= D_\mathrm{A}^2(z) \int y(\mathbf{\hat{n}}) \, \mathrm{d}\Omega \ E_\mathrm{e} &= rac{3}{2} Y(z) m_e c^2 / \sigma_T \ E_\mathrm{tot} &= (1+rac{1}{\mu_e}) E_\mathrm{e} \end{aligned}$$

 $E_{tot} \simeq 0.06$ -1 x 10⁶² erg per QSO

Ruan et al. (2015) see also Crichton et al. 2015 The environment of early SMBHs

Early QSOs are rare

like 10^{13} M_{sun} DM halos (for δ =0.03, i.e. 30 SMBHs/Gpc³, M_{DMH} ~ 4 x 10^{12} M_{sun})

Fan 2012

Early QSOs are massive systems

 $M_{BH} = 10^9 M_{sun} \rightarrow M_* \sim 10^{11} M_{sun} \rightarrow M_{halo} > 10^{12} M_{sun}$

SMBHs powering z~6 QSOs are rare and big If early SMBHs form in massive halos they should be highly clustered

Correlation function

angular correlation function $w(\theta)$

$$dP=n^2[1+w(heta)]d\Omega_1d\Omega_2$$

excess probability over random of finding one galaxy within the solid angle $d\Omega_1$ and another galaxy within $d\Omega_2$ separated by an angle θ

Spatial correlation function $\xi(r)$

$$dP = n^2 [1 + \xi(r)] dV_1 dV_2$$

$$\xi(r) = (r/r_0)^{-\gamma}$$

Some examples $dP = n^2 [1 + w(\theta)] d\Omega_1 d\Omega_2$

Galaxy (or AGN) bias b

$$b^2(r,z,M) = \xi_g(r,z,M)/\xi_m(r,z)$$

 ξ_g = galaxy (or AGN) corr. function ξ_m = dark matter corr. function

Extrapolating from z<4 suggests that early QSOs are likely highly biased and live in

halos with $M_{\rm DMH}^{} \sim 10^{13} \ M_{\rm sun}$

Adapted from Cappelluti et al. 2012

Simulations of early BH formation

According to (most) simulations, early SMBHs can only form in overdense environments

The fate of the most massive halos at z=6

Galaxy overdensities around high-z QSOs

Search mostly based on small FoV instruments and inconclusive e.g. ACS/HST = 3x3 arcmin² = 1x1 Mpc² at z=6. (Stiavelli+05, Kim+09, Husband+13, Banados+13, Simpson+14)

density of LBGs similar to that in blank sky fields

Simpson et al. 2014

Galaxy overdensities around high-z QSOs

LSSs around protoclusters (Overzier+09)

z = 6.23.4 arcmin 43. Overdensities might extend up to 30arcmin, i.e 10 phys. Mpc (Overzier+09). 430 Y (h⁻¹ Mpc) Feedback may limit galaxy $1+\delta_{\Sigma_{\rm gal}}$ formation in the QSO 425 vicinity (e.g. Stroemgren field radius ~ 2-4 Mpc) 420 10 Radius (arcmin)

235

X (h⁻¹ Mpc)

230

use LBC@LBT: FoV ~ 25'x25' \rightarrow 8x8 physical Mpc² at z=6

240

245

i-band dropout selection

Dropouts:

 $z_{AUTO} < 25$ $r_{ape} > 27.2$

Primary (i-z) – $\sigma_{(i-z)}$ > 1.3

Secondary 1.1< (i-z) – $\sigma_{(i-z)}$ < 1.3

Comparison i-z > 1.4

spurious candidates removed after visual inspecion

Dropout summary table

Field	Primary	Secondary	
J1030	14	10	
J1148	8	3	
J1048	6	9	
J1411	11	8	

(but detected in r band)

Primary cand. Secondary cand. HST/ACS QSO

Significant overdensities

Asymmetric distribution in most fields in agreement with simulations

Dropout overdensities

SXDS dropouts visually inspected and corrected for incompleteness

Field	i-drop- obs.	i-drop corr.	δ	σ_{δ}
J1030	16	13	2.0	3.3
J1148	10	8	0.9	1.9
J1048	9	7	0.6	1.7
J1411	12	10	1.3	2.5
SXDS		4.3		

The estimated significances account for cosmic variance and photometric errors.

Combined significance: 3.7σ

Radial distribution of dropouts

2.4σ evidence for dropout deficit at d<2.5 Mpc (see also Utsumi+10): QSO (+ SF) feedback effects?

Optical spectroscopy

SDSS J1048 field (z=6.20)

#4811: primary dropout at z=5.9

 $^{\circ}5\sigma$ emission line, Lya at z=5.9

 $\Delta z=0.3 \rightarrow \Delta r=18$ physical Mpc

Optical spectroscopy

SDSS J1048 field (z=6.20)

#2277: secondary dropout at z=5.7

Optical spectroscopy

SDSS J1148 field (z=6.42)

