Probing the earliest galaxies and reionization

Eros Vanzella

INAF - Astronomical Observatory of Bologna

Lecture #3

1

Lectures

Lecture 1

Monday 2hr

Cosmic reionization: how was the IGM reionized? Probes of cosmic reionization (and ionization) Deep surveys Selection techniques of high-redshift galaxies Redshift evolution of the UV luminosity function

Lecture 2

Tuesday 1hr

Ionized IGM

UV LFs

Is all cosmic reionization made by galaxies ? Issues on the escape fraction

Lecture 3

Thursday 1hr

Spectr. observations

Exploring the farthest and faintest galaxies with deep spectroscopy: the first two Gyrs after the Big-Bang

Lecture 4

Friday 1hr

Current limitations: the future

generation optical/near-IR facilities: Next JWST and ELT

Cosmic hydrogen reionization: who, when, how ...

Ionizing sources

on SFH

Focusing on star-formimg galaxies

Galaxies leading candidates @ z>3

How many ionizing photons escape from galaxies ? **Fesc** First: we cannot directly observe Lyman

continuum radiation (<912A) at z>4.5;

by definition reionization happens if LyC photons are "used": the mean free path is very short during EoR

A way is to look at properties of z<4.5 LyC emitters, learn, and investigate if at z>6 such properties are more common, eventually identifying reionizing sources

 $N_{HI}>1.7\times10^{17} cm^{-2} T_{(Lyc)}>1$

Trying to observe directly LyC at low redshift (z<4.5) However, galaxies are selected with dropout techniques ...

Counter-intuitive ?

We select high-z galaxies with the dropout technique, is the required drop biasing our search for Lyman continuum emission ? I.e. are we missing them ? Is there a selection

effect (Cooke et al. (2014) ?

What is the color of a stellar "ionizer" ? Do we miss it ?

What is the color of a stellar ionizer ?

In case of stellar emission there is not a significant effect in the color selection: we don't miss them. Why?

Do we miss it ?

Two reasons: 1) IGM mean free path 2) Intrinsic spectrum both introduce a drop even if fesc=1

Vanzella+15

Note: for AGNs the effect can be not negligible

Before measuring fesc...

Theoretical modeling: SFH, RT, feedback, kinematics, geomerty of the gas/dust – complex problem

- fesc \downarrow if redshift \uparrow (Wood & Loeb+00)
- fesc 1 if redshift 1 (Razoumov+06,+10)
- fesc ~ with redshift
 (Yajima+10; Ma et al. 2015; Gnedin+08)
- fesc ↑ if redshift ↑ [phenomenological models]
 Haardt & Madau (2012), Kuhlen & FG (2012),
 Alvarez+12, Fontanot+14
- fesc ↓ if halo mass ↑
 (Wood & Loeb+00, Ricotti & Shull+00
 Yajima+10, Razoumov+10)
- fesc ↓ if halo mass ↓ (Gnedin+08a,b)
- fesc ~ with halo mass (Ma et al. 2015)
- fesc ~ 1 with halo mass (Trebitsch 2015)

fesc ↑ if (↓L OR ↓Mass)
Wise & Cen+09; Kimm & Cen (2014);
Wise et al. (2014); Paardekooper et al. (2015);
Roy et al. (2015); Fernandez & Shull+11;
Choudhury & Ferrara 07, Ferrara & Loeb 2012

Large variance in the predictions : 1) may increases for low mass halos / luminoisties 2) may increases with redshift

This typically requires very high resolution simulations, capable of resolving details in the insterstellar medium (ISM).

Escape fraction of ionizing radiation (LyC) gas transmission, dust extinction (+ geometry)

Ionizing photons UV (λ <912A) LyC

Attenuation by ISM (HI , dust)

Attenuation by the IGM (LAF, LLS, DLAs) NON-ionizing photons UV (λ~1500A)

Attenuation by ISM (dust) **Intrinsic ionizing photons unknown:** commonly adopted strategy is to compare the observed flux at LyC to the observed flux at a frequency where the intrinsic emissivity can be inferred.

The escape fraction of ionizing radiation (LyC)

fesc: is smaller than 1 by definition

 $\begin{array}{ccc} T_{LyC} = e^{-\tau(LyC)} & T_{(LyC)} = N_{HI} \sigma_{LL} & \sigma_{LL} = 6.28 \times 10^{-18} \ \text{cm}^{-2} \\ \hline \tau_{(LyC)} > 1 & N_{HI} > 1.7 \times 10^{17} \text{cm}^{-2} \end{array}$

Observing Lyman continuum leakage / fesc
1) understand the physical mechanisms that allow ionzing photons to escape, apply to z>6 during EoR
2) need to observe z<4 (i.e. < 4500A)

CHALLENGING! It is FAINT! e.g., fesc=8% at z=3 L* galaxy (m1500≈24.5) => m.... =30 (AB) ! Δm=5 (e.g., i-U>5).

Stochasticity of the IGM absorption at the LyC (<921A)

View angle effects ...

Cosmological radiation hydrodynamic simulation (Cen & Kimm 2015)

fesc~T_{Lyc}=e^{-τ(Lyc)} τ_(Lyc)=N_{HI}σ_{LL} σ_{LL}=6.28×10⁻¹⁸ cm⁻² => this implies N_{HI} > 5×10¹⁷ cm⁻², fesc<5% ... result: stacking of ~ 100 galaxies is needed to obtain a good estimate of fesc within 20% uncertainty

View angle effects ...

Cosmological radiation hydrodynamic simulation (Cen & Kimm 2015)

fesc~T_{Lyc}=e^{-τ(Lyc)} T_(Lyc)=N_{HI}σ_{LL} σ_{LL}=6.28×10⁻¹⁸ cm⁻² => this implies N_{HI} > 5×10¹⁷ cm⁻², fesc<5% ... result: stacking of = 100 galaxies is needed to obtain a good estimate of fesc within 20% uncertainty

Foreground contamination (I)

Example (GOODS-S) z=3.41 (Vanzella+12)

z=3.41 Δθ=0.3"

Recent NIR spectroscopic observations confirm our warnings raised in 2010 (Siana+15)

Statistical study on this effect (EV+10; Nestor+11)

- critical for ground-based observations (spatial resolution)
- increases with redshift
- increases with increasing depth

Critical analysis based on GOODS+CANDELS , EV+12 (tricks to limit the contamination)

Wavelength (Å)

[OII] or Hb, [OIII]4959-5007 in the filter ?

Foreground contamination, statistical correction

50% probability that at least 13% of N sources is contaminated

1) Given number counts at deep mags (assuming uniform surface density)

2) Consider a separation R or minimum spatial resolution (e.g. seeing)

we can calulate the probability **p** that a foreground obj. falls within radius **R**

... past claimed LyC detections have been revised (Siana+15)

Probability to observe K contaminated sources f(K)or at least K contaminated sources P(>K) in a sample of N high-z galaxies, given the probability p of the single case $f(K) = \binom{N}{K} p^{K} (1-p)^{N-K}; \quad P(\geq K) = \sum_{i=k}^{N} f(i)$

LyC measurments: caveats under control ?

Intrinsic View angle effects + intermittent behavior

External IGM absorption stochastic

Foreground contamination

Increase sample size

Modeled

Statistical correction Individual investigation (spectroscopy) Looking directly at ionizing emission from z≈3.3–3.5 102 LBGs from GOODS-S (EV+10,12)

(GOODS+CANDELS)

 $<\Delta m>=7.5$ $<\Delta m>=6.1$ $<\Delta m>=6.6$ fesc,rel < 3% fesc,rel < 9% fesc,rel < 5%

Extremely deep U-band images: U≈30.3 1σ, GOODS (VLT, Nonino+09) U≈29.7 1σ, COSMOS (LBT, Grazian+15)

LyC

U-I BC

Grazian et al. (2015) - COSMOS 37 galaxies, fesc,rel < 3% (see also Boutsia+11; Guaita+15 Giallongo 2002; Siana+10; Siana+15) LyC measurments: caveats

Intrinsic View angle effects + intermittent behavior

External IGM absorption stochastic

Foreground contamination

In Addition Intrinsically low <fesc> at L>0.5L* ?? Increase sample size

Modeled

Statistical correction Individual investigation (spectroscopy) Need to access fainter sources

... however, investigate faint regime is challenging

CHALLENGING! It is FAINT! e.g., fesc=8% at z=3 L* galaxy (m1500≈24.5) => man ≈30 (AB) ! Am=5 (e.g., i-U>5). ... however, investigate faint regime is challenging

... accessing fainter galaxies (~0.1L*) is even NG! 20 more problematic: m₁₅₀₀ ~ 27 and fesc=8% translates to 22 =3 m₉₀₀ ~ 32 (AB) !! (AB) 24 i₅₀₀≈24.5) Mags ... solutions ... 26 1) exploit lensing magnification -U>5). 28 2) investigate indirect non-ionzing signatures 30 3) look carefully at the colors, refined selection to catch possible objs with fesc >0 $\frac{(L1500/L_{LyC})_{\text{int}}}{(F1500/F_{LyC})_{\text{obs}}}\exp(\tau_{LyC}^{\text{IGM}}),$

(2)

 $f_{\rm esc,rel} \equiv$

Probing LyC emission at z~2-3 for sub-L* (L<0.5L*) LBGs with strong lensing

Vanzella 2012 Expect to probe fesc<15% for 0.05-0.1L* galaxies with 5 galaxy clusters and U-band imaging U~30 (assuming LFs, magnification maps, U-band depth, IGM ...

(2)

 $\frac{(L1500/L_{LyC})_{\text{int}}}{\chi} \exp(\tau_{LyC}^{\text{IGM}}),$ $f_{\rm esc,rel} \equiv$ $F1500/F_{LyC})_{obs}$

Ongoing programs: e.g., HST/UV survey on lensed clusters (PI Siana, 90 orbits)

Non-ionizing (>912A) signatures of LyC leakage

Covering fraction 2) weak Carbon Silicon low-ionization absorption lines (CII,SiII), low covering fraction (Jones+14; Heckman+11)

Density bounded nebula ? 3) large O32=[OIII]4959-5007 / [OII]3727 (> 10) O32 index positively correlates (also) with fesc (Nakajima & Ouchi 2014; Jaskot & Oey 2013; but see Stasinska+15)

km/s

Two LyC sources with direct LyC detection !? ■ No X-ray (6Ms) ■ No high-ionization lines (CIV, NV...) ■ Nucleated, but spatially resolved Re~250pc ■ No mid/far-IR ■ Lya yes/no ■ SFR 20-30 Msol/yr ■ M* ≈ 10⁹Msol ■ UV slope ≈ -2

A plausible ionizer : Ion2 (z=3.213)

Observing LyC with HST

HST WFC3/UV

... data acquisition for Ion2: ongoing these days...

Very informative on the physical mechanisms that allow ionizing photons to escape and reach the IGM, irrespective to the nature of ionizing radiation

Study z~3-4 galaxies, analogs of z>7 ?

ISM conditions & ionization

EW([OIII]+Hb) 6200A observed 720 rest-frame Density-bounded condition?? Transparent ISM ?

Finkelstain et al. (2014) z=7.5 Oesch et al. (2015) z=7.73 Zitrin et al. (2015) at z=8.5 all with similar strong rest-frame nebular emission Two relevant facts: 1) LyC leakage 2) Strong nebular emission

are "Ion2-like" sources more frequent at z>6 ??

What is the fesc of AGNs ?? ... work in progress

we know fesc in AGN can be > 0, but how many AGNs do we observe at high-z ?

