High-redshift massive black holes and AGN

Marta Volonteri

Institut d'Astrophysique de Paris

Galaxies

mass: 10⁹-10¹² solar masses

 $R_{halo}{}^{\sim}GM_{halo}/\sigma^2$

MEGAPARSEC

 $R_{bulge} \text{~~} GM_{bulge} / \sigma^2$

KILOPARSEC

I parsec=3.26 light years= 3×10^{18} cm $\sigma \sim 50-400$ km/s for most galaxies

Massive Black Holes mass:10⁵-10⁹ solar masses

 $R_{bondi} \sim GM_{BH}/c_s^2$

PARSEC

 R_{inf} ~ GM_{BH}/σ^2

PARSEC

 R_{sch} =2GM_{BH}/c²

MICROPARSEC

 $c_s \sim 10-100$ km/s for most galaxies $c=3 \times 10^5$ km/s

Local samples

~80 MBHs detected in nearby galaxies to-date

Black hole masses correlate with galaxy properties. This may mean their growth/evolution are intimately connected.

High-redshift quasars and local MBHs

Seed black holes and cosmological structure formation

How can you make the first galaxies?

The universe after the Big Bang was not completely uniform

Gravitational instability caused matter to condense until small regions become gravitationally bound

They then break away from the global expansion, collapse down on themselves, and form a galaxy at the center

The typical halo mass is an increasing function of time: bottom-up or hierarchical structure formation

The mass functions of halos has a strong evolution with time

This is fine for collapsing dark matter... what about gas and stars?

Gas needs to cool down in order to reach the density and temperatures required for star formation BEFORE the first generation of stars, the Universe is metal free: metal line cooling does not exist!

The atomic H cooling curve drops at temperatures below 10⁴K

Halos with T_{vir}< 10⁴K have to rely on molecular hydrogen cooling

At high-z (z>20) most of the halos are small ($T_{vir} < 10^4 K$)

But only massive enough halos can cool, even with the aid of H_2

Only a small fraction of halos at early times - the most massive ones - can host cold gas and eventually star forming clouds

Tegmark et al.

Hierarchical Galaxy Formation

Milky Way's dark matter halo mass ~10¹² solar masses

H	Periodic Table of the Elements										©wv	2 He					
Li 3	Be	 hydrogen alkali metals alkali earth metals 					 poor metals nonmetals noble gases 					B	C	N ⁷	08	F	10 Ne
11 Na	12 Mg	📕 transition metals 📄 rare earth metals									13 Al	14 Si	15 P	16 S	CI	18 Ar	
19 K	Ca	SC	Ti Ti	V ²³	Cr ²⁴	25 Mn	Fe ²⁶	C0	28 Ni	Cu Cu	Zn Zn	Ga ³¹	Ge ³²	As	³⁴ Se	35 Br	36 Kr
87 Rb	38 Sr	³⁹ Y	⁴⁰ Zr	41 Nb	42 Mo	43 TC	44 Ru	⁴⁵ Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	Te ⁵²	53 	Xe
Cs	Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	⁷⁷ Ir	Pt	79 Au	Hg	81 TI	Pb	83 Bi	⁸⁴ Po	At 85	86 Rn
87 Fr	⁸⁸ Ra	AC	¹⁰⁴ Unq	Unp	106 Unh	¹⁰⁷ Uns	¹⁰⁸ Uno	Une	Unn								

58 Ce	Pr	Nd	Pm	82 Sm	Eu	Gd ⁶⁴	Tb	66 Dy	67 Ho	Er	Tm	Yb	71 Lu
90 Th	91 Pa	92 U	93 Np	94 Pu	Am	96 Cm	97 Bk	Cf	es Es	100 Fm	101 Md	102 No	103 Lr

Why low metallicity?

(e.g. Bromm & Loeb 2003, Spaans & Silk 2006, Begelman, MV & Rees 2006, Shang et al. 2010, Latif et al. 2013)

Forming a single very massive star makes is easier to form a single very massive BH

Key parameter is the inflow rate on the central object: Mdot>0.01-0.1 Msun/yr

 \checkmark Primordial gas composition and suppression of $\rm H_2$ formation by dissociating UV flux help

But they are not necessary conditions

Why low metallicity?

Low metallicity is important if going through a supermassive star phase: models with quasistars* or stellar mass BH mergers do not care about metallicity

*powered by accretion on an embedded BH created by core collapse

Density map BHs form only in high gasdensity regions

Metallicity map BHs form in low-metallicity regions just before they get enriched

Circles: galaxies with BHs

Habouzit, MV+ in prep

PopIII stars remnants

(e.g., Madau & Rees 2001; MV, Haardt & Madau 2003)

✓Some simulations suggest that the first stars are massive M~100-600 Msun (e.g., Abel et al. 2002; Bromm et al. 2003)

✓ Metal free dying stars with M>260Msun leave remnant BHs with Mseed≥100Msun (Fryer, Woosley & Heger 2003)

Problem: are the first stars massive enough?

M_{*}>260 M_{sun} → M_{BH}>150 M_{sun} Recent simulations revise the initial estimates of the stellar masses to possibly much lower values, just a few tens Msun

If BH mass too small difficult to settle down into galaxy center => dynamics suppresses accretion/growth opportunities

PopIII stars remnants

(e.g., Madau & Rees 2001; MV, Haardt & Madau 2003)

Recent estimates suggest lower star masses. If BH mass too small may be difficult to grow (but see Alexander & Natarajan 2014)

✓A few sufficiently massive stars would do (Hosokawa+15)

Gas-driven collapse

(e.g. Bromm & Loeb 2003, Begelman, MV & Rees 2006, Lodato & Natarajan 2006, Latif et

✓Formation of supermassive star collapsing into a MBH of ~10⁴-10⁶ M_{sun}

Feasible if star formation is suppressed, and most of the gas is accreted onto the central protostar

Key parameter: inflow rate on the central object. If
Mdot>0.1 Msun/yr => supermassive star or quasi star*

*powered by accretion on an embedded BH created by core collapse

Star formation: enemy of direct collapse

 competition in gas consumption (i.e. part of the gas goes into stars instead of BH formation

 collisionless stars do not dissipate angular momentum efficiently

✓ SNe can blow away the gas reservoir

Gas-driven collapse: dynamics

Gas-driven collapse: dynamics

(e.g. Begelman, MV & Rees 2006, Lodato & Natarajan 2006, Mayer et al. 2010)

Mdot is high: if <u>global dynamical instabilities</u> trigger inflow and dissipate angular momentum on timescales shorter than star formation (Begelman, MV & Rees 2006)

No metallicity threshold

Peter Englmaier Astronomisches Institut Uni Basel, Switzerland

Isaac Shlosman University of Kentucky USA

Gas-dynamical collapse: thermodynamics

Gas-driven collapse: thermodynamics

(e.g. Bromm & Loeb 2003, Spaans & Silk 2006, Begelman, MV & Rees 2006, Shang et al. 2010, Latif et al. 2013)

Mdot is high: if star formation delayed, e.g.,

-primordial gas composition => radiative cooling inefficient

-H₂ formation suppressed by strong dissociating UV flux => UV background flux (J_{21})

UV background vs stellar mass

Latif et al. 2014

UV background vs metal enrichment

Need strong local stellar sources to provide dissociating radiation throughout collapse~10-100 Myr

BUT

Stars explode in ~10 Myr and pollute the environment

Z=0 direct collapse: tough conditions

Contours: strength of the dissociating field: yellow J2I ≥ 100 orange J2I ≥ 300 red J2I ≥ 500

Blue ellipse: expansion of the metal bubble

Timesteps: I Myr

Within 10 Myr no galaxy meets the metal/ H_2 requirements

Collapse, free-fall time ~10-100 Myr

Stellar-dynamical processes: stellar mergers

Stellar-dynamical processes: stellar mergers

Omukai et al. 2009; Devecchi & MV 2009, Devecchi et al. 10, 12; Katz et al. 2015

Mass segregation in nuclear star cluster: massive stars sink to the center

- Stellar collisions form a very massive star
- ✓ At low metallicity \Rightarrow massive black hole ~10³ M_{sun}

Stellar-dynamical processes: stellar mergers

Devecchi & MV 2009, Devecchi, MV et al. 10, 12

Stellar-dynamical processes: stellar BH mergers

Stellar-dynamical processes: stellar BH mergers

Davies, Miller & Bellovary 2011, Miller & Davies 2012; Lupi et al. 2014

Merging stellar BHs normally ejected (3-body, GW)

- Merger-driven gas inflow increases velocity dispersion
- ✓ BHs merge \Rightarrow massive black hole ~10³ M_{sun}
- No metallicity threshold

Stellar-dynamical processes: stellar BH mergers

Lupi et al. 2014

How do the seeds grow?

