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Local samples
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~80 MBHSs detected in nearby galaxies to-date

Black hole masses correlate with galaxy properties. This may
mean their growth/evolution are intimately connected.
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High-redshift quasars and local MBHs

As massive as the largest
MBHSs today, but when the
Universe was ~ Gyr old!

POX 52, NGC 4395: stellar
mass 4x108 M_ , MBH mass

sun?

3x10° M.

Galaxies without MBHs too
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HOWV can you make the first
massive black holes?

BH mergers
in nuclear clusters

Dynamics-driven
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Stellar mergers
in nuclear clusters
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Seed black holes and cosmological
structure formation



How can you make the first galaxies?

Seeing back into the cosmos

The universe after the Big
Bang was not completely

uniform
HST GOODSY = & - ,
Gravitational instability [T — '
caused matter to condense |EiEEEECECT————————————
until small regions become % L come
gravitationally bound o ;,;E““k"”d“'{“

First
galaxies

1 ’D .0004
(~400,000 yrs)

Age of the universe (billions of years)

They then break away from the global expansion, collapse down on
themselves, and form a galaxy at the center
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This is fine for collapsing dark matter... what about gas and stars!?

Gas needs to cool down in order to reach the density and temperatures
required for star formation
BEFORE the first generation of stars, the Universe is metal free: metal line
cooling does not exist!
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The atomic H cooling
curve drops at
temperatures below 0K

Halos with Tvir< 104K have

to rely on molecular
hydrogen cooling
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At high-z (z>20) most of the halos are small (Tvir< 10*K)

But only massive enough halos can cool, even with the aid of H>

Only a small fraction of halos at early times - the most massive ones -
can host cold gas and eventually star forming clouds



Hierarchical Galaxy Formation

MiniQSO: M(halo)=2.1e6 7=21.0 [Mini@so: M(halo)=1.1e7
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Milky Way’s dark matter halo mass ~10'2 solar masses
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Periodic Table of the Elements © www.elementsdatabase.com
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: Periodic Table of the Elements of the Astrophysicist .
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Why low metallicity?

(e.g. Bromm & Loeb 2003, Spaans & Silk 2006, Begelman, MV & Rees 2006, Shang et al. 2010, Latif et al. 201 3)

v'Forming a single very massive star makes is easier
to form a single very massive BH

v’ Key parameter is the inflow rate on the central
object: Mdot>0.01-0.1 Msun/yr

¢/ Primordial gas composition and suppression of H,
formation by dissociating UV flux help

v/ But they are not necessary conditions




Why low metallicity?

Low metallicity is
important if going
through a supermassive
star phase: models with
quasistars™ or stellar
mass BH mergers do
not care about
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*powered by accretion on an embedded BH created by core collapse



Redshift §.69

WMax(Z)=0.0142334

Density map Metallicity map

BHs form only in high gas- BHs form in low-metallicity
density regions regions just before they get
enriched

Circles: galaxies with BHs Habouzit, MV-+ in prep
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Poplll stars remnants

(e.g., Madau & Rees 2001; MV, Haardt & Madau 2003)

First stars:
maybe one

If the star is
more massive

Gas cools

very slowly star per than ~309 solar
forming a galaxy, up masses, lt.
stable disc to hundred collapses into

black hole,
~200 times
the Sun

times larger
than the sun

¢v'Some simulations suggest that the first stars are massive
M~100-600 Msun (e.g., Abel et al. 2002; Bromm et al. 2003)

v’ Metal free dying stars with M>260Msun leave remnant BHs with
Mseed=100Msun (Fryer,Woosley & Heger 2003)



final mass, remnant mass (solar masses, baryonic)
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&/ £ |z 5
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Gm @ <  |f BH mass too small difficult
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initial mass (solar masses)

center => dynamics
suppresses accretion/growth
opportunities



Poplll stars remnants

(e.g., Madau & Rees 2001; MV, Haardt & Madau 2003)

First stars:
maybe one

If the star is
more massive

Gas cools

very slowly star per than ~30(? solar
forming a galaxy, up masses, it
stable disc to hundred collapses into

black hole,
~200 times
the Sun

times larger
than the sun

v'Recent estimates suggest lower star masses. If BH mass too small
may be difficult to grow (but see Alexander & Natarajan 2014)

v A few sufficiently massive stars would do (Hosokawa+15)



Gas-driven collapse

(e.g. Bromm & Loeb 2003, Begelman, MV & Rees 2006, Lodato & Natarajan 2006, Latif et

Globally The stellar The black hole
unstable gas core collapses swallows

infalls towards into a small the envelope
the galaxy black hole, growing up

center and a embedded in to a million
supermassive what is left solar masses
star forms of the star

v'Formation of supermassive star collapsing into a MBH of
~10%106 M_,.

v/ Feasible if star formation is suppressed, and most of the
gas is accreted onto the central protostar

v'Key parameter: inflow rate on the central object. If
Mdot>0.] Msun/yr => supermassive star or quasi star*

*powered by accretion on an embedded BH created by core collapse



Star formation: enemy of direct
collapse

v/ competition in gas consumption (i.e. part of the
gas goes into stars instead of BH formation

v collisionless stars do not dissipate angular
momentum efficiently

¢/ SNe can blow away the gas reservoir



Gas-driven collapse: dynamics




Gas-driven collapse: dynamics

(e.g. Begelman, MV & Rees 2006, Lodato & Natarajan 2006, Mayer et al. 2010)

Globally The stellar The black hole
unstable gas core collapses swallows

infalls towards into a small the envelope
the galaxy black hole, growing up

center and a embedded in to a million

supermassive what is left solar masses
star forms of the star

vMdot is high: if global dynamical instabilities trigger inflow
and dissipate angular momentum on timescales shorter
than star formation (Begelman, MV & Rees 2006)

¢ No metallicity threshold
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Gas-dynamical collapse: thermodynamics




Gas-driven collapse: thermodynamics

(e.g. Bromm & Loeb 2003, Spaans & Silk 2006, Begelman, MV & Rees 2006, Shang et al. 2010, Latif et al. 201 3)

Globally The stellar The black hole
unstable gas core collapses swallows

infalls towards into a small the envelope
the galaxy black hole, growing up

center and a embedded in to a million
supermassive what is left solar masses
star forms of the star

vMdot is high: if star formation delayed, e.g.,

-primordial gas composition => radiative cooling
inefficient

-H, formation suppressed by strong dissociating UV
flux => UV background flux (J,)
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UV background vs stellar mass
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UV background vs metal enrichment

Need strong local stellar sources to provide
dissociating radiation throughout
collapse~10-100 Myr

BUT

Stars explode in ~|10 Myr and pollute the
environment
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Stellar-dynamical processes:
stellar mergers




Stellar-dynamical processes:
stellar mergers

Omukai et al. 2009; Devecchi & MV 2009, Devecchi et al. 10, 12; Katz et al. 2015

Stars merge into
Gas a very massive

star, that
collapses into

Locally
unstable

gas flows
towards the
galaxy center

fragments
into stars,
and a dense
star cluster
forms

black hole ~1000
times more
massive than
the Sun

¢/ Mass segregation in nuclear star cluster: massive stars
sink to the center

v/ Stellar collisions form a very massive star

v At low metallicity = massive black hole ~10° M___
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Stellar-dynamical processes:
stellar BH mergers




Stellar-dynamical processes:
stellar BH mergers

Davies, Miller & Bellovary 201 |, Miller & Davies 2012; Lupi et al. 2014

Dark matter

Gas inflow

Y MGIase the Stellar mass BHs
Star cluster + velocity dispersion .
merge, into a BH

stellar BHs of the star CIusFer, ~500-1000 solar
reduce relaxation
masses

time

v’ Merging stellar BHs normally ejected (3-body, GW)
v/ Merger-driven gas inflow increases velocity dispersion
¢/ BHs merge = massive black hole ~103 M_

un

v No metallicity threshold



Stellar-dynamical processes:
stellar BH mergers
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How do the seeds grow!

Massive
black
hole

Early universe




